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4.

ROCKETSONDE DECELERATORS

4,1 General.

High altitude decelerators, such as parachutes or inflatable siructures,
have been used to conduct meteorological soundings to altitudes of at least
60 kilometers. Although many of these same data could have been obtained
as direct probe measurements, it was found to be more economical to employ
a descent vehicle and a rocketsonde payload. The instrumentation for these
payloads has been a great deal less sophisticated and less costly than would
be required for direct probing during rocket vehicle ascent. It is likely that
rocketsonde techniques will be required for gathering data to the upper
altitude limits of at least the simpler sensors to maintain a low system cost.
Therefore, the need for improved decelerators in future systems is of para-
mount importance.

The requirements for a meteorological rocketsonde decelerator can be
enumerated as follows:

1. Low ballistic coefficient

2, Deployment reliability

3. Acceptable stability

4. Adequate radar cross~section

5. Relatively constant descent rate
6. Low cost

Although the above factors are interdependent to some degree, each
is discussed separately in the sections which follow for ease in presentation.

4.1.1 Ballistic Coefficient.

A low ballistic coefficient (W/CpA) is the primary factor which governs
the usefulness of a high altitude meteorological decelerator system. This
characteristic determines the equilibrium or terminal fall rate of the rocketsonde



at the various altitudes as indicated in Figure 4.1-1. Also for a given
apogee or deployment altitude, the ballistic coefficient determines the
maximum dynamic overshoot velocity and the altitude at which the des-
cending system reaches terminal velocity. Figure 4.1-2 presents initial
frajectory data for a typical high-altitude deployment of a descent system
with a given ballistic coefficient. The system accelerates downward past
the zero g value (where drag equals weight) and then accelerates in the
upward direction because the drag force at this point is greater than the
weight. This upward acceleration continues until the vehicle slows down
to terminal velocity for the particular altitude where the drag force equals
the weight. In the meantime the descent velocity has significantly exceed-
ed or overshot the terminal velocity. At a lower altitude the descent
velocity slows up to the terminal velocity value. After this the terminal
velocity curve is followed during the remainder of the descent provided
the system remains deployed and aerodynamically stable. The net result

is that for a high altitude deployment, the descent systems fall faster than
terminal velocity for a portion of the descent. The magnitude of this
velocity overshoot is a function of ballistic coefficients as indicated in
Figure 4.1-3. The overshoot velocity is also a function of deployment
altitude as indicated in Figure 4.1-4.

For most meteorological measurements utilizing the rocketsonde
technique, descent velocities must be maintained at subsonic levels.
Aerodynamic heating of the sensor, stagnation pressure increase and wind
shear measurement error are all a function of the square of the descent
velocity and measurement errors increase drastically as fall velocity in-
creases. In addition, faster fall rates present to the sensor instrumentation
a greater timewise gradient of the parameter to be measured., Most of the
inexpensive sensors and instrumentation are response time limited, and the
measurement accuracy is thereby degraded by fast fall rates. Transonic and
supersonic velocities render most of the meteorological measurements useless.
Therefore, an adequately low ballistic coefficient for the descent system is
necessary for accurate measurements. Once this ballistic coefficient is
determined, then the optimum deployment altitude can be selected. To
achieve a low ballistic coefficient the weights of the descent vehicle and
payload instrumentation must be kept to as low a value as possible. Pay-
load miniaturization must be carried to the extent which is economically
feasible. In addition, the drag of the descent vehicle should be maximized
based upon packaging volume requirements. Generally speaking, this means
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that the drag coefficient per unit packaging volume should be maximized
for the flow region being considered. This indicates the use of very thin
and lightweight fabrics for canopy materials. The weight and packaging
volume requirements for shroud lines and fittings should also be minimized.

4.1.2  Deployment Reliability.

To achieve the descent rates indicated by the respective ballistic
coefficient, the decelerator must achieve full deployment upon ejection
from the rocket vehicle. Conventional silk parachutes require a dynamic
pressure of at least 0.03 to 0.07 Ibs/ft2, depending upon parachute design,
in order to inflate reliably. The dynamic pressure is a function of deploy-
ment altitude and velocity. For a given rocket vehicle both of these factors
are related to launch angle. Typical examples are presented in Figure 4.1-5
which indicated marginal inflation reliability for the Arcas parachute at
launch angles above 86° and for the Loki Dart parachute at launch angles
above 83°. Deployment velocity vs. deployment altitude for reliable
inflation of conventionally shaped silk parachutes are presented in Figure
4.1-6. These data indicate that self inflation is not practical above an
altitude of about 230,000 feet. Above this altitude the critical inflation
velocity is in the fransonic and supersonic flow regions.

In addition to the altitude and deployment velocity effects upon
self inflation reliability, the deployment altitude wind velocity must be
considered. High altitude winds can be as great as typical deployment
velocities, and can either subtract from or add to the deployment velocity
depending upon wind direction.

The above factors indicate the need for positive inflation techniques
for decelerator deployment much above 180,000 feet.

4.1.3 Stability.

In order to take full advantage of the decelerator ballistic coefficient,
a reasonable degree of stability must be achieved. The drag coefficient for
many decelerators is slightly greater at a small angle of attack than at zero
and does not fall off much until about 30 degrees is experienced. Therefore,
from a fall rate standpoint oscillations as great as # 30 degrees are not
objectionable.
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Some authors have implied that even a mildly oscillating system
would result in wind measurement errors because of the instantaneous hor-
izontal component of velocity established at an instantaneous angle of |
attack. However, when the period of the oscillation is faken into account,
it has been found that the horizontal displacement due to the oscillation L
is negligible, i.e., within the random error (rms) of the typical tracking "
radars,

A major objection to instability of the decelerator is that relatively \
severe telemetry signal dropouts occur for severely oscillating decelerators.
All of the sondes flow to date have nulls in the transmitted antenna patterns
along the longitudinal axis of the sonde. At high elevation angles where
the decelerators oscillate to the greatest extent, signal dropouts at the
receiver are most troublesome. As the sonde descends to a lower altitude
and the oscillations dampen, signal dropouts are virtually eliminated.
Very often there is a severe loss of telemetered data in the high altitudes
where it is most needed. Therefore, stability of the decelerator within
reasonable bounds is important for high altitude data retrieval.

The effect of decelerator oscillations on the sensor instrumentation
has been mentioned by some authors as an important factor, however, for
the sensors flown to date the normal attitude variations of the sensors due to
decelerator oscillations have not appeared to cause any significant error in
the reduced data.

4.1.4 Radar Cross=Section.

A majority of the rocketsondes which have been flown in the past
have required radar tracking of the decelerator. The current development
trend is foward a telemetry instrument which incorporates slant range track-
ing in addition to azimuth and elevation angle determination. With such an
instrument the requirement for radar fracking will be eliminated and the
decelerator will not be required to present a radar target. However, if the
cost of the fransponder type instrument is significantly greater than the trans-
mit-only type, the latter sonde will probably be used at launch sites where
tracking radar is available. For these systems the decelerator will be required
to incorporate a radar target with at least a 71m?2 radar cross-section. This
is generally accomplished by coating the silk canopy material with either a
silver or copper conductive finish. Canopies can also be formed with aluminized
mylar for this purpose.

-10 -




4.1.5 Constant Descent Rate.

Since the upper altitude densities are much less than those of the
lower atmosphere, sensor response is generally a good deal slower at high
altitudes. This is not only frue of sensors such as the thermistor temperature
measurement element but is also true of wind response of the decelerator.
Most of the decelerators have a constant drag coefficient and fall fast at
high altitudes and slow at the lower altitudes. This is indirect opposition
to the sensor requirements. It would be advantageous to obtain as slow
descent velocities as possible in the upper atmosphere and to increase the
fall rates in the lower atmosphere. Although it is possible to employ reef-
ing devices fo achieve a more uniform fall rate, it is probably not worth
the expense to speed up the fall rate in the lower atmosphere for the sake
of saving a few moments of tracking time. Maijor efforts should be directed
toward obtaining the slowest high altitude descent velocities possible.

4.1.6 Cost.

Since meteorological rocketsondes are being used on a routine basis,
and a large number of them are being flown each year, the cost of the
decelerator must be kept to a low value. One hundred dollars or so per
unit seems to be a reasonable cost for such a device.

-11 -



4,2 Conventional Parachutes.

4,2.1 General.

The meteorological rocketsonde parachute is used for wind measure=
ment and to lower the temperature measuring sonde at a sufficiently slow
velocity for adequate temperature measurements. The descent rate of the
parachute is of prime importance since wind measurement errors and temp-
erature measurement errors due to aerodynamic heating and sensor response
log are directly related fo rate of fall of the parachute-sonde system. Of
course, the parachute must deploy properly and fully inflate to take advant-
age of its shape and fabric area. Although the flat and hemispherical silk
parachutes seem to inflate fairly reliably at altitudes as high as 180,000
feet, the mylar and specially shaped parachutes seem to require mechanical
inflation aids, such as an inflatable torus ring. Although parachute stability
is a desirable feature, oscillations as great as 30~degrees for most designs
are probably not too harmful for descent rates, or telemetry signal drop outs.
In general, the drag coefficient for most parachute designs increases with
angle of attack up to about 15 to 20 degrees. For parachutes oscillating
within this range, slower rather than more rapid descent rates, compared
to a perfectly stable parachute, are to be expected. The period of oscilla-
tion has been found experimentally to agree with the law of the simple
pendulum where the effective length of the pendulum is related to the shroud
line length in the expression for the natural period, T, asin

T = 2=V 1/2 where L = Length of shroud lines

For the Arcas parachute the effective length, L, is 20~feet and the period,

T, is 5-seconds. For the smaller dartsonde parachutes the effective lengths,
about 10-feet, and the corresponding periods, about 3.5-~seconds, are shorter
than for the Arcas parachute. For both types of parachutes the oscillation
periods are so short that displacements of the parachutes which might lead to
wind determination error are negligible. The prime consideration for parachute
design should, therefore, be to obtain as slow a descent rate as possible o
minimize measurement errors.

4,2.2 Design Parameters.

To appreciate some of the problems of designing an effective parachute
(or decelerator of any kind) imagine a stationary decelerator in a stream of
moving air. Conservation of mass flow requires that the air must be deflected
and caused to flow around the decelerator. The shadow area aft of the body
experiences a low pressure and the diverted air tends to collapse into the
shadow, usually in a highly turbulent manner.

- 12 -




Now, turbulence has both its good and its bad effects. It can be
shown that those shapes that create the most turbulence also offer the high-
est amount of drag or resistive force. Because turbulence represents a
consumption of energy, this correlation should not be surprising. Unfortunate-
ly, turbulence also produces undesirable instabilities.

Wind tunnel tests show that the shadow area behind the canopy tends
to be filled from two sections at opposite points on the circumference in a
seesaw manner. As the collapsing airstream oscillates, so does the local
external pressure, and since the force on the canopy is governed by the
difference between internal and external pressure, a cyclical rocking moment
developes. The parachute oscillates at a rate and magnitude governed by a
complex set of factors. In some cases the oscillation may cause the load to
swing through an arc of 60-degrees or more.

None of the conventional parachute designs - and that includes the
hemisphere, the flat—circular, and the conical - are particularly stable in
flight. All of them allow the payload to swing beneath the canopy, part-
icularly when the air itself is turbulent, gusty and unstable. Conventional
parachutes do not open reliably at very low dynamic pressures and they
exhibit poor stability with coning angles or oscillations of about £ 450 or
more at high gltitudes. Experience with parachutes at dynamic pressures
below 1 Ib/! 2 has shown that for repeatable and immediate canopy opening,
an inflation aid must be provided.

Descent rates of current conventional parachutes are excessive for
accurate meteorological measurements above an altitude of 180,000 feet.
The ballistic coefficients of the current parachute - sonde systems are
greater than 0.05 Ib/ft2 and larger parachutes are required for the given
payload weight to reduce the fall rates. As long as metalization of the silk
canopy fabric is required for radar tracking, it appears that the conventionally
shaped parachute is limited to a ballistic coefficient of at least 0,01 Ib/ft2
by itself without any allowance for payload weight.

Fairly extensive investigations indicate that a major problem in
parachute deployment is the tangling and twisting of the parachute shroud
lines and their interference with the canopy. Photography has shown that
shroud lines flung over the crown of the parachute have reduced the effective
flying area and have caused the abnormal descent rates. There have also
been discontinuities in the descent rates of recent conventional parachute
systems. |t appears that once the parachute has been sized properly for the
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desired descent rate and the dynamic pressure is adequate for self-inflation,
the major cause of failure to attain this rate is mechanical tangling of the
shroud lines which causes a reduction in the effective canopy ared. High
rocket spin rates may certainly be a cause of such interference and twisting
of the shroud lines, but it is probable that some degree of tangling will take
place even with modest vehicle spin rates.

Although the high altitude parachutes are suspected of gliding to a
certain degree, this has been difficult to detect since gliding would be
interpreted as wind drift during data reduction of the fracking data. Solid
mylar parachutes, without special apertures to create an artificial porosity,
and even the fine mesh 3-momme silk parachutes most likely have very
little effective permeability at high altitudes. These parachutes, there-
fore, must be susceptible to a degree of instability in gliding and/or
oscillating. 1t is well known that the Arcas and Loki parachute oscillate
to angles nearly horizontal with the horizon, and that these oscillations,
although eventually damped out, will persist down to altitudes of 80,000
feet. Variations in the initial deployment or injection conditions will no
doubt govern the magnitude of the high altitude oscillations from flight to
flight. There is a great deal of flight data on received telemetry signal
strength variations to indicate that large oscillations occur on every flight.

Although parachute stability is desired, payload packaging volume
and fall rates are critical in the rocketsonde application; therefore, the
parachute fabric area is critical.

A brief review of the factors which affect parachute performance is
presented in the paragraphs as follows:

1. Basic Shape - The drag coefficient of a particular
parachute design does not vary appreciably with flow speed at Reynolds
numbers above Rg = 1000. For the high altitude applications it is certain
that the descent conditions will maintain values well above this limit so
that a constant drag coefficient can be used.

The Reynolds number data for typical conditions in the high altitude
for parachutes is as follows:
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Altitude 170,000 feet

Descent Velocity 225 ft/sec

b =1.6929 x 107 Ibf-sec? - fr~4

u=3.6816 x 107 Ibf-sec ft2
Parachute Flying Diameter Crown Height Reynolds Number
Arcas 15.0 ft 7.5 ft 8, 800
Dartsonde 6.0 ft 3.0 ft 3,520

Experimental evidence indicates that a maximum drag coefficient,
which is based on projected area, is obtained for a parachute with a crown
height to inflated to flying diameter ratio of one=half (0.5); that is, for a
parachute which is approximately hemispherical in shape. If designed and
joined together as flat circles, parachute canopies have inflated diameters
which are approximately two-thirds (0.66) of the laid-out fabric diameters
and are essentially hemispherical in shape. The ratio of their inflated frontal
area, Sq , to that of the area of the fabric, Sg , is consequently on the
order of Sy /Se =0.45. The drag coefficient referred to canopy fabric
area is then approximately Cpy =0.45Cp_ . The parachute descent vel-
ocity, U, can then be calculated as either,

2w 2w
U: —_—_— -Oor - —
P CDn S P CDo Se
2. Equilibrium Descent Velocity - The descent velocity of a

parachute system can be given by:
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Z= am + — )
g
Ke
where: K = Cp S
2 mg
P = atmospheric density
Z = altitude coordinate
. g = acceleration of gravity
Z

If the second term, —g_‘, is neglected, descent velocity can be predicted within
5-percent accuracy for Z < 140 m/sec, and within a 1-percent accuracy for
7 < 63 m/sec. Table 4-1 can be used to predict descent velocities at various
altitudes for given values of K.

3. Gliding - The stable equilibrium of a nonporous hemispherical
parachute about a point 1.3 times the diameter below the canopy is at an angle
of attack of approximately 45 degrees. A hemispherical parachute which does
not oscillate may therefore maintain a steady gliding angle of 45 degrees in
still air. The weight of the parachute and load is supported in this case by the
resultant aerodynamic force, R, composed of both lift and drag as indicated in
Figure 4.2-1. The effective vertical velocity or weight coefficient, Cyy_
used to calculate descent velocity may be defined as e

W C

Cw, = =
1/2PU2 in 2

Sg sin ~«

Rg

where Cyy_  may be as much as twice the value of Cp - . A gliding parachute
has a slower rate of descent than a nongliding parachute by a factor of the
square of the sine of the angle of attack. The angle of stable gliding is also
affected by the shroud line length. For the rocketsonde application the gliding
mode is to be avoided since the horizontal glide velocities will be interpreted
as wind velocities in the data reduction and erroneous wind velocities will be
reported. Gliding can be reduced by increasing the porosity or permeability
of the parachute canopy.

-16 -




Ze| sv| v9 | 00l 9Ll OEL| Z¥l m..o_xummm.v 000‘9vT | SL
zel ze| sy | 1Z | 18|16 | oOL|GOL} ZLlf &L1} &Cly Lyl v...o_xovoo._ 009 ‘62¢ 0L
o1l €z| ze |16 | 6699 | 2Z |94 | 18| 98| €6 | ZOL| LI} CEl Yo_xuw 16°1 00z ‘ele q9
ZUIl z1) vz |8e | vy |6V | VS |95 | 09| ¥9| 69 | 9L | 68 | 86| OCI To_xm 16¥°€ 008 ‘961 09
6letl st lez|celze |1y (v |Sv|8y| 26|46 |V | vL| 16| 8L -01%¥260°9 oov ‘081 119}
Z1ol| vl |1z|6z|8C|0E {2 | VE|9E | &€ | EV | 8BV | G5 | 89 | 96 | 9¢El m..o_xmuwo. l 000‘¥91 0s
c|lcs joL]o1|8L{0z|2C |€ |G| LZ)| 62| 1€ |SE |1y |09} OL| 66 m:o_xoomo.m 009 ‘L¥’1 114
€16 | £ IL| €L{vL | 9L |ZL [ 8L| 6L | 0|22 |SC|é6C|GE| 05| LL m:o_xnmoo:w 00Z ‘1€1 oy
Z | € | ¢ |8 6 |OL | 1L |Z1 | ZL{EL| L |9L}ZL|0OC|ST|SE | éF mno_xo_om.m 008 ‘711 Ge
ZiC | ¢ |§ 9 |4 L 8 8 |6 oL { Il yZL vl |41l | ¥ | €€ N..o_x_omm._ 00v ‘86 o€
1|12 ¢ |¢€ vy |S g G 9 19 9 L 8 6 I 9lL|e z-0 1X6E90° ¥ 00028 T4
L[t I ¢ € |€ £ £ Yy (v | v |9 |69 9 |£ it |Gl z-01%6068°8 00969 74
ooZloojosio2|gL|21t|0t|60|80|L0|20|S0|Y0{€0|20|Ll0|S00 ms\mv_ (ddv) +4 w
SANTVA ALISN3Q aaniiLiv
M/Lf =2
(00s/s1040w) SIANLILTY SNONIVA LV SIILIDOTIA TIvA - 318Vl

-17 -



= Flying Diameter R = Resultant Aerodynamic Force
= Total Velocity R =12+ D%

= Descent Velocity

= Drag Force 7 = Glide Angle

= Lift Force a = Angle of Attack

FIGURE 4.2-1 HEMISPHERICAL PARACHUTE GLIDING MODE
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4, Oscillating Parachutes - Stable gliding occurs only under
certain favorable conditions. A more probable mode of motion for most
parachutes is an oscillation which is produced through dynamic interaction
between canopy forces and the suspended load. While gliding may prevail
at slow rates of descent, oscillations are predominant at speeds anticipated
for the rocketsonde application. The drag or weight coefficients are
significantly reduced from stable conditions to the oscillating mode, and
telemetry signal strength variations (i.e., signal dropouts) at the ground-
based receiver are caused by the oscillating payload. In such a system,
let « be the angle from the vertical through which the pendulum acts.

From the previous discussion, it is seen that a could initially have almost
any value from 0 to 180° depending upon the direction in which the nose
cone is pointing during separation. The dynamic behavior is then subject to
analysis as a circular pendulum for which the period, T, is defined in the
following:

L 2 d 4
R S 5/\/1—|<2 sin2 4

g

where, L, is the length of the pendulum, g is the acceleration due to gravity,
and, K, is the sin ( @ /2). g is a function of « whose maximum value is

m/2.

An evaluation of one »f the probable limiting cases, where a approaches
1809, yields a period of approximately 8.0 seconds for a typical 15~foot dia-
meter parachute for the initial condition immediately after deployment,
neglecting drag and damping, and assuming a rigid pendulum. In the other
limiting case, where « is a small angle, the period is approximately 5.5
seconds under the same assumptions.

5. Permeability ~ Permeability is a measure of the average
speed of the flow of air passing through the parachute fabric. The effective
permeability of parachute canopies can be expressed as:

2 \0.6
s 172 » V7 cp,

Weff = Wiest
Sa A Piest
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and the flow speed ratio as

Se 1/2 » Cp_ \ 0+°
WA = Wiest v 0.2 =
Sg A Prest
where Weff = Effective permeability flow speed
Wiest = test permeability flow speed
A Ptest = test pressure differential

The drag or weight coefficients are reduced by permeability as indicated
in the expression,

Cp - Cp, (1-WA)

where CDu is the drag coefficient for a nonporous material and Cp is

orr
the corrected value which allows for flow through the canopy. The drag on
a parachute is reduced as the permeability increases. Permeability tends
to reduce the drag but also reduces the tendency for a parachute to oscillate
and glide. Although the effect of permeability can be predicted for low
altitude flight, there is some question as to the effect at high altitudes.
The large mean-free=-paths of air molecules at high altitudes significantly
affect the permeability of small-sized pores such as are found in the 3-momme
silk fabric being currently used in the fabrication of current high altitude
meteorological rocket parachutes. There are indications that at the 200, 000~
foot levels these parachutes are essentially impervious fo flow through the
canopy fabric. A means of increasing the permeability of such parachutes
would be by the cutting out of sufficiently large holes in the canopy material.

6. Critical Velocity - For every parachute there is a velocity,
called the "critical velocity™, above which it will not inflate but instead
remain in a duffle bag or "squidded" configuration. The more porous the
fabric, the lower the critical velocity and, of course, the less useful the
parachute. Fortunately, the squidded parachute will generally introduce




sufficient drag to cause the velocity to drop below the critical velocity
and to permit inflation to proceed - assuming, of course, that it does not
strike the ground first.

The critical velocity depends upon the overall porosity of the canopy
and the distribution of porosity. It also depends upon the shape of the
canopy mouth opening. No precise analytical method exists for determining
the critical opening velocity but it can be estimated from assumed values of
the critical parameters.

7. Aeroelasticity = The permeability of textile fabrics is
increased by applying tension and causing elastic deformation in the material.
Inasmuch as tension in canopies is proportional to the dynamic pressure, in
low altitudes the drag coefficient of a fabric parachute decreases as the speed
is increased. This factor may not be significant in the high altitudes for the
reasons mentioned in the previous section.

8. Parachute Size and Rigging Line Length = For a given speed
of descent the drag coefficient decreases as parachute size is increased since
rigging line tension increases as the diameter is made larger. The flying
diameter can be increased slightly, however, by increasing the length of the
rigging lines.

9. Breathing - This is a dynamic phenomenon resulting in an
oscillation in the diameter of the parachute. Since the breathing involves
changes in shape, it may be dependent to some extent upon the elasticity of
the parachute system. Changes in parachute diameter are necessarily attend-
ed by changes in overall length which are communicated to the suspended
load through the suspension lines, an efficient spring mass system in itself.
The results in a spring mass system supported by an elastic envelope contain-
ing a considerable mass of circulating air, i.e., two free masses joined by
an elastic link. The forces resisting deformations of shape are apparently
negligible for the normal equilibrium condition of shape of the parachute so
that a fransient disturbance is easily translated into small periodic undamped
oscillations in both the length and diameter of the system.

10. Deployment - The complete deployment of a conventional
parachute consisfs of a number of steps as follows:
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a. Release or ejection from the vehicle

b. Line and canopy stretch terminated by snatch force

Ce Inflation to opening shock, terminated by overinflation

d. Rebound and recovery to "steady" drag condition

e. Completion of deceleration to near equilibrium velocity

f. Steady or conirolled descent

(A Deployment into a Wind Field - High altitude winds have

quite frequently been found to be as great as 100 meters per second which is
similar in magnitude to the horizontal velocity of some rocket vehicles at
apogee. Experience indicates that parachute deployment and sireaming
problems increase when the rocket horizontal velocity is in the same direction
and of the same order of magnitude as the deployment altitude winds. Of
course, the effect is a reduction in the relative wind velocity with respect

to the parachute and a reduction in the available dynamic pressure. Since
high altitude wind reversals and wind speeds are a seasonal and geographical
phenomena, without a positive inflation aid, parachute deployment reliability
can be quite variable,

12, Deployment from a Spinning Missile - Parachute deployment
from a spinning missile is a fairly complex phenomena and defies a precise
analytical treatment. The spin energy may help to open and spread out the
parachute canopy fo some extent and no doubt the spin rate of the deployed
canopy is greatly reduced from its packaged condition. In general, the pay-
load will not be despun during the opening process, therefore, a difference
in spin rate between the canopy and the payload will be created. This factor
no doubt tends to twist and tangle the shroud lines and prevent full inflation
in many cases.
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4.2.3 Arcas 15" Gentex Parachute.

The standard Arcas parachute as shown in Figure 4.2-2 is a pre-
formed hemispherical-shaped silk parachute manufactured by the Gentex
Company. Details of this parachute are presented in Table 4-2.

The parachute is generally supplied with alternate gores metalized
for radar tracking. Twenty~-two percent of the silk fabric is metalized for
use with FPS-16 quality radar and fifty percent is metalized for use with the
lower powered radars.

The Arcas parachute assembly consists of an instrument mounting base
and a radar-reflective parachute (diameter 4.5 meters) packaged inside a
cylindrical parachute container. A cross-sectional diagram of the parachute
assembly is shown in Figure 4,2-3. The parachute container is a sealed unit
which is attached to the forward retaining ring of the motor case. A lanyard
connects the after-closure of the parachute container to the head~end closure
of the rocket motor. The instrument package to be used is attached to the
instrument base and inserted into the nose~cone. When the payload is
assembled, the cone is secured to the instrument base by six steel balls that
are held in place by the collar of the parachute container. The instrument
base is attached to the forward closure of the parachute container by join-
ing the stud of the parachute container closure with the stop nut mounted on
the instrument base. A cork spacer is used between the parachute container
and the instrument base to absorb some of the shock of separation. The
process for the assembly of the payload is outlined in greater detail in the
discussion of the rocket-launching procedure.

The principle of separation of the Arcas payload assembly is illustrated
in Figure 4.2~4, Pressure generated by the separation charge acts on the
afterclosure of the parachute container, and the pressure is transmitted through
the inner cylinder of the container assembly. The shear pins which secure the
forward closure of the parachute container break, thus allowing the nose~cone,
instrument package and parachute pack to be ejected. The parachute and
lanyard retain the after-closure assembly of the parachute contained. When
the parachute is fully extended, the snap line attached to the crown of the
parachute breaks and the steel ball joining the instrument base and nose-cone
fall away thus allowing the nose—cone to separate from the instrument base
and package. Figure 4.2-5 gives the dimensions of the parachute and the con-
figuration of the parachute and payload after expulsion.



FIGURE 4.2-2 ARCAS GENTEX PARACHUTE, 15 FOOT DIAMETER
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TABLE 4-2

ARCAS 15' GENTEX PARACHUTE

Design. Preformed Hemispherical
Flying Diameter 15.0 ft
Line Length 28,0 ft
Number of Lines 24
Parachute Weight 2,62 lbs
Canopy Material 3-Momme Silk
Canopy Weight 0.865 lbs
Canopy Weight Density 2.43 x 10-3 Ib/ft2
Weight of Shrouds and Fittings 1.75 lbs:
Surface Area 354 12
Flying Cross-Section Area 177 12
Standard Payload Weight 4,65 Ibs
Cp 0.624
Cp 0.335
Ballistic Coefficient W/CpA 0.065 Ib/i’\‘2
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Legend
1. Motor Case Retaining Ring 6. Parachute-Container Wall 11, Shock Cushion
2. Inner Split Cylinder 7. Ogive Sleeve Section 12. Forward Closure
3. Packaged Parachute 8. Instrument Base 13. Parachute
4. Stud 9. Stop Nut Container
5. Shear Pins 10. Stee! Balls 14. After Closure

15. Cable

FIGURE 4.2-3 CROSS-SECTIONAL DIAGRAM OF THE ARCAS PARACHUTE ASSEMBLY

Legend
1. Parachute Container 4. Ogive 7. Break Line
2, After Closure 5. Arcasonde 1A 8. Split Inner
3. Steel Balls 6. Parachute Cylinder

FIGURE 4.2-4 PRINCIPLE OF SEPARATION OF THE ARCAS PAYLOAD ASSEMBLY
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5.76m,

Silk 3 Momme
Silvered (50%)

Parachute Weight
(.91 kg.)

32 Braided Nylon Shrouds
22,7 kg. Tensile Strength

FIGURE 4.2-5

Payload Weight
{(1.36kg.)

ARCAS PARACHUTE AND PAYLOAD AFTER EXPULSION
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An analysis has been made of flight test data for the Arcas Gentex
parachute. Figure 4.2-6 presents the descent rate average for hundreds of
Arcas parachute flights with a standard payload of 4.65 pounds. The
weight to effective or flying area ratio, W/S, for these flights was 0.0410
Ib/F’rz, and except for occasional erratfic flights, the descent rate data
agrees within L 8 per cent of altitudes below 170,000 feet. Figure 4.2-7
presents descent rate data for heavier and lighter payload weights for the
Arcas parachute with weight to effective area ratios of 0,0459 lb/ft2 and
0.0334 lb/Ffz. Descent times are presented in Figure 4.2-8 for various
Arcas payload weights. A statistical analysis of Arcas parachute descent
rates has been conducted by the Air Force at Cape Kennedy. The results
are tabulated in Table 4-3.

WSMR reports that the Arcas parachute does not fully deploy for the
first 25,000 ft. to 35,000 ft, or 80 seconds to 90 seconds after deployment
at apogee. The fall rates are higher than expected right after apogee and
the radar signal is weak. Oscillations of T 450 to £ 900 with a 5-second
period are experienced at the high altitudes, and these are damped out
with a period of 8-seconds in about 23~-minutes of descent, For systems
ejected at 250,000 ft. velocities on the order of 800 to 900 fi/sec. are
attained at 230,000 feet. The lag in initial wind response at 60 Km is about
20-seconds. The wind response lag after apogee which we have studied is
presented in Table 4-4.

Figure 4.2-9 presents two typical radar plots from which these kind
of data were derived. Figure 4.2-10 presents the initial wind response
altitude against apogee altitude. Although the scatter of points on this plot
indicate that a correlation does not exist between apogee and wind sensing
altitude, the data are too few from which to draw any final conclusions.
However, it appears that some chutes respond at 2,000 to 3,000 feet below
apogee, while others lose 20,000 to 30, 000 feet before responding to the
wind.

A recent study of Arcas parachute descent rates has been conducted
by the Army at WSMR. Descent velocities for the standard Arcas system
have been plotted by the Army as shown in Figures 4,2-11 through 4.2-18.
These data indicate that the parachute becomes fully deployed and descent
rates are stabilized fo the theoretical values by an altitude of 40 km. It
appears that occasionally the parachute deploys very soon after ejection from
the rocket vehicle and follows the theoretical descent ratio curve essentially
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Ht (K ft)

81-85
86-90
91-95
96-100
101-105
106-110
111-115
116-120
121-125
126-130
131-135
136-140
141-145
146-150
151-155
156-160
161-165
166-170
171-175
176-180
181-185
186-190
191-195
196-200
201-205

Based on Arcasonde launches at Cape Kennedy Florida

FALL RATE STUDY OF
ARCAS PARACHUTE AND SONDE PAYLOAD

TABLE 4-3

Avg Fall No.
(FPM) Samples
1891 25
2233 25
2674 25
3118 25
3568 25
4076 25
4579 25
5168 25
5855 24
6543 24
7275 25
8120 25
2118 25
10220 25
11387 25
12557 24
13816 24
15113 24
16677 23
18117 19
19857 16
21807 10
23611 6
25786 4
27902 2

-32 -

Standard %
Deviation 1 Dev
62,3 Ft. 68
58.6 76
72.4 64
105.3 56
119.8 72
134.0 72
122.0 64
187.2 68
228.9 71
150.2 71
228.9 72
225.1 60
316.4 68
283.1 72
314.9 52
467,2 67
340.8 75
482.1 75
468.8 61
554.6 74
430.3 62
608.5 70
394.2 67
1964-65

%
2 Dev

92
92
100
100
92
92
96
96
92
96
96
96
96
92
100
96
92
92
100
25
100
100
100



TABLE 44

INITIAL WIND RESPONSE LAG DATA

Apogee First Indication of Wind Response

Altitudes Time Altitudes Time

220 K' 128 Sec 200 K* 240 Sec

212 128 180 176

182 128 177 145

188 128 186 136

201 133 196 150

213 128 171 192

203 128 200 148

213 128 205 160
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FIGURE 4.2-9 ¢pS-16 RADAR TRACKS OF ARCAS FLIGHTS AT PACIFIC MISSILE
RANGE

NOTE: Parachute Expulsion at 128 Seconds

XY - Plot Z - Plot
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ALTITUDE OF FIRST WIND RESPONSE (ft x 10-3)

22 /
21
9
é@
2 3/9
B
<
5
K
3
N
190
180
170
180 190 200 210 220

Apogee Altitude (ft x 1073)

230

FIGURE 4.2-10 [NITIAL WIND RESPONSE ALTITUDE VS.APOGEE ALTITUDE
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from apogee. More often, however, the descent velocities exceed the
theoretical values and show a rather erratic pattern above 40 Km.

4.2.4  Loki Dart 7.6' Parachute.

A standard Loki Dart parachute as shown in Figure 4.2-19 is a cir-
cular flat silk parachute which is manufactured by the Irvin Air Chute
Company. Details of this parachute are presented in Table 4-5.

This parachute is made radar-reflective by metalizing alternate gores
so that fifty percent of the area presents a target. A center or squib line is
attached from the payload to the crown of the canopy, so that the crown is
drawn somewhat from the hemispherical shape. This is done to increase the
drag coefficient and to improve deployment relicbility. However, a less
stable descent results as compared with the hemispherical shape. Figure 4.2-20
presents typical descent rates for the 7.6' parachute and Figure 4.2-21 presents
altitude vs. time profiles for various ejection altitudes.

A recent study of the 7.6" Loki Dart parachute descent rates has been
conducted by the Army at WSMR. Flight test data from this study are plotted
in Figures 4.2-22 through 4.2-26. These data indicate that this system is
capable of achieving a ballistic coefficient better than 0.050 lb/ff2, but
many of the flights possess excessive fall rates above an altitude of 40 kilometers.
No doubt deployment problems are the cause of the rapid fall rates.

4.2.5 NOL 6' Square Parachute.

A standard NOL parachute is the 6-feet square silk parachute which
has been used with the Loki Dart (Hasp) and the five=inch gun probe projectile.
This parachute consists of 71" x 71" square of 3-Momme silk and eight shroud
lines of 9-feet length. The silk canopy is metalized for radar reflection.

Each of four shroud lines is attached to a corner of the canopy, and each of
the remaining shroud lines is attached to a point slightly offset from the mid-
point of each of the four sides. The purpose of the slight offset is fo induce
a slow spin rate to the descending parachute to prevent gliding which might
lead to erroneous wind data. A weight breakdown for this parachute is as
follows:

Canopy 0.088 Ib.

Shroud and fittings 0.100

Payload 0.750 |
TOTAL 0.938 Ib.




FIGURE 4.2-19 DARTSONDE INSTRUMENT PACKAGE ON 7.6 FOOT CHUTE
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TABLE 4-5

LOKI 7.6" IRVIN PARACHUTE

Design Flat Circular
Flying Diameter 5.7 Ft.

Line Length 7.6 Ft.
Number of Lines 9

Parachute Weight 0.225 Ib.
Canopy Material 3-Momme Silk
Surface Area 45.5 Ft.2
Flying Cross-Section Area 25.5 Ft.2
Fabric Diameter 7.6 Ft.
Standard Payload Weight 0.788 Ib.
CDn 0.660

CDe> 0.370
Ballistic Coefficient 0.060 Ib/ft2
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FIGURE 4.2-21 LOKI 7.6 PARACHUTE-SONDE DESCENT TIME
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The fabric area for this parachute is 35 ft2 and NOL reports a drag coefficient
of 0.714 and a ballistic coefficient of 0.040 Ib/ft2 with 0.750 payload.

This parachute can be packaged into a 1.6 inch diameter cylinder with a
length of 5.5 inches.

4.2.6 NOL Wind Sensor Parachute.

Most of the parachutes so far described as conventional parachutes
have been used with sonde payloads, and ballistic coefficients have been
about 0.050 lb/f’rz. In general, these systems have been adequate for obtain-
ing wind data to altitudes of about 55 km. To obtain wind data at higher
altitudes NOL has developed a parachute-sphere combination with a theoretical
ballistic coefficient of about 0.010 Ib/ft2. The parachute has a 41 square
canopy of unmetalized 2-3/4 momme silk. The sphere is a 16=inch diameter
inflatable Mylar structure with internal radar corner reflectors. The sphere is
supported by the parachute shroud lines as shown in Figure 4.2-27. Eight
shroud lines of 27-pound test nylon cord are attached to the parachute similar
to the shroud line atiachment method used in the six-foot square chute. The
inflatable sphere is consiructed of two layers of 0.5-mil mylar, back-to=back.
An aluminized mylar corner reflector is rigged inside the sphere. The sphere
is self-inflated on ejection by two cubic inches of entrapped air. In addition,
the chute carries inflation aids in the form of two self-inflated tubes formed
from 0,5-mil mylar, 38 inches long by 1.5 inches in diameter, The tubes are
attached to the chute across the diagonals with heat-sealing tape.

A considerable saving in weight (i.e. 50%) over the conventional
metalized canopy is made by using the 16=inch inflatable sphere with corner
reflector in lieu of silvering the canopy. The theoretical weight-to-drag/
cross sectional area ratio of the balloon-chute is 0,01 Ib/ft2, compared with
0.04 Ib/ft2 for the 71-inch square chute and approximately 0.05 Ib/ft2 for
the Arcas chute. Comparative descent rates at 60 kms are 61 m/sec (200 ft/sec)
for the W = 0.01 chute, 122 m/sec (400 ft/sec) for the 71-inch chute, and

CpA
over 151 m/sec (460 ft/sec) for the Arcas chute. These descent rates are based
on ejection from 69 kilometers (225,000 feet). It must be pointed out, however, -
that the flight test results for the balloon=parachute combination have averaged
a ballistic coefficient of 0.020 |b/ff2 instead of the theoretical value. It is
expected that improper deployment, i.e., twisted shroud lines, is the problem.



Inflation Tubes

4' Parachute

— 16" Sphere with
Corner Reflector

WT = 54 GMS

FIGURE 4.2-27 NOL WIND SENSOR PARACHUTE
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4.3  Parachutes with Geometry Porosity.

4.3.1 General.

Most of the conventional parachutes utilize fabric canopies with
the porosity of the canopy material permitting a stabilizing flow during
descent. The pore size, however, is quite small and when it approaches
the mean free path of the molecules of air in the high altitudes, the
effective porosity of the fabric is reduced to a negligible value. Although
this fabric has a large degree of porosity in the lower altitudes, it is
essentially non-permeable at high altitudes. These parachutes oscillate
rather severely from deployment down to about 80,000 feet where the
fabric porosity and damping become effective. In an attempt to achieve
more stability in the high altitudes, various experimenters have devised
parachute shapes which offer air flow through sections of the canopy that
have been cut out from the conventional shape. In general, an improve-
ment in stability has resulted from these efforts, and in some cases reduced
descent rates have been achieved. This is most likely due to more efficient
use of the canopy surfaces. A review of the designs incorporating the
canopy cut-out modifications on geometric porosity, as this is called,is
presented in the next sections.

4.3.2 Disk-Gap-Band Parachute.

Various models and sizes of the Disk-Gap-Band parachute have been
developed and tested by the G. T. Schjeldahl Company for NASA Langley
Research Center. The configuration of this parachute design is shown in
Figure 4.3-1. The geometric porosity of this design is in the formation of
a gap between the top disk and the side band positions of the canopy. An
inflatable torroidal ring is attached to the inner surface of the band for
positive deployment,

A 16.6 foot diameter DGB parachute has been designed for use with
the Arcas. This design has a total canopy area (S.) of 216 ft2 and a drag
coefficient of 0.50 based upon total canopy area. Parachute weight is 1.7
pounds. With a payload weight of 3.30 lbs. the ballistic coefficient is 0.050
Ib/ft2, The parachute canopy is constructed of two major parts designated as
the disk and the band. The disk, which is a flat circular sheet, forms the
central part of the canopy; and the band, which is cylindrical in shape, extends
down from the outer edge of the disk and forms the lower portion or skirt of the
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Disk

FIGURE 4.3-1 DISK-GAP-BAND PARACHUTE CONFIGURATION




canopy. The disk and the band are separated to provide a geometric open-
ing designated as the gap. The area relationships of the canopy are as
follows:

Disk Area = 52.4% of total area
Gap Area = 12.4% of total area
Band Area = 35.2% of total area

The torus inflation aid is constructed of 4-inch diameter tublar sections. The
torus has a major diameter of 11-feet and is attached to the inside surface

of the band portion of the canopy at each of the twenty suspension line tapes.
Three (3) Saran wrapped water soaked blotters are located equally spaced
inside the forus and each has sufficient water to pressurize the torus. Each
torus is pressure tested to assure leak~proof construction before installation
into the parachute canopy.

The DGB parachute systems are equipped with a miniature ball
bearing swivel located between the confluence point of the parachute
suspension lines and the payload lanyard. This swivel allows for differential
rotation rate decays. Clevis type hardware is provided for attachment of the
suspension lines to the swivel and the swivel to the payload lanyard. The
lanyard is 24-inches in length.

The parachutes are provided packed in deployment bags fabricated
of cotton canvas and nylon webbings. The deployment bags are of such
size as to fit firmly but easily into the standard Arcas rocket canister.

The deployment bag is provided with a permanently attached strip
of material having elastic loops which hold the suspension lines in place
and allows the suspension lines to deploy only from the payload end of the
holding strip. This arrangement assures an orderly deployment of the
suspension lines and assists in preventing problems of line entanglement.
The parachute deployment bag is equipped with two (2) 1-3/4 inch wide
nylon webbings which retain the parachute canopy in the deployment bag
until the last loop of the suspension lines pull out and unlatches the restraint
webbings. This system assures that the suspension lines are deployed full
length before the canopy is released.

The deployment bag attachment lanyard is provided with five sewn=in
loops to absorb the shock of stopping the bag and restrained canopy while



the suspension lines are deploying. The Arcas DGB parachute dimensions
are as follows:

Nominal Diameter 16.6 ft.
Number of suspension lines 20
Length of suspension lines 18 ft.

Torus cross section diameter 4 in.

Torus major diameter 11 ft.

Attachment lanyard length 24 in.

Miniature swivel 1-1/2 in. long by 3/4 in. dia.

The disk and band portions of the canopy are fabricated of a dacron-
thread reinforced metalized mylar film material designated as G. T. Schieldahl
material X-821. This mylar film is of 1/4 mil thickness and is 100 percent
metalized for radar reflectivity. The dacron reinforcement threads carry the
stress loads and provide ripstop characteristics. The X~-821 material is joined
by mylar tapes which are also reinforced by dacron threads. This same tape
is used as suspension line tape to join the band to the disk portion of the
canopy .

The suspension lines are 85 pound test coreless nylon line. Each
suspension line is continuous through the confluence point and is tied off at
each end to a suspension line tape at the edge of the canopy. The twenty
18-foot long suspension lines are actually formed from ten lines, each 36-feet
long.

The torus is constructed of 1/2 mil clear mylar film and is joined to
the canopy by dacron reinforced mylar tapes. The attachment tapes are sewn

to the canopy in addition to being adhesive bonded.

The payload lanyard and the deployment bag, shock-attenuating lanyard
are both constructed of 1500 lb. test nylon webbing.
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The deployment bag is constructed of cotton canvas to reduce damage
resulting from hot sparks emitting from the separation charge. Nylon webb-
ings are used for the attachment loop and the canopy restraint straps. Nylon
tape is used to edge cover flaps of the deployment bag. Rubber bands mounted
in a dacron mylar tape are used to hold the folded suspension lines in place
in the deployment bag.

A scaled-down version of the Arcas DGB parachute design has been
flight tested with the Loki Dart system. The results have been poor because
of deployment problems which are most likely spin rate related.

In the course of the development flight tests for the DGB parachute,
it was found that the deployment from a spinning missile caused shroud line
tangling and canopy entanglement. Therefore, the parachute was packed in
a special deployment bag designed with canopy restraint straps, suspension line
holders and a shock attenuating attachment lanyard. The most important factor
to be considered for any parachute deployment method is assurance that
suspension lines are kept in tension at all times during line and canopy deploy-
ment. To accomplish this, the deployment bag was redesigned by placing one
and three~quarter inch wide canopy resiraining straps inside the bag, and by
attaching the suspension line holding strip to the deployment bag. This
accomplished three things: 1) attaching the suspension line holding sirip to
the deployment bag assured that the lines deployed from the payload attach~
ment end only; 2) use of the deployment of the last loop of the suspension
lines as the activating mechanism for release of the canopy assured against
premature release; and 3) restraint of the canopy until the suspension lines
were fully deployed assured that the canopy did not eject from the deploy-
ment bag until the suspension lines were siretched full length and under
tension. The modified deployment bag is shown in Figure 4.3-2 and the
sequence of deployment events is presented in Figure 4.3-3. With this
system, reliable deployment has been obtained as high as high as 232,000
feet.

The above deployment technique has certainly been an improvement
in the state~of~the-art for deploying meteorological rocketfsonde parachutes.
Other significant improvements developed during the DGB development program
have been the use of a positive inflation aid and on improvement in stability.
The DGB parachute system is equipped with a water vapor pressurized torus
inflation aid, to provide instantaneous and full opening of the parachute
canopy immediately after deployment. The canopy design uses geomefric porosity
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as a means of achieving stability so that stability characteristics will not
vary with the altitude of operation. Wind tunnel tests indicate that the DGB
parachute is stable at approximately 6-degrees angle of attack. Several
rocket flight tests have been conducted using on board camera and long
range ground-based cameras to check stability in actual operation at high
altitudes and indications are that inflight stability is as good or better than
predicted by the wind tunnel tests. Absence of periodic oscillation in
telemetry signal strength and radar return signal records is also an indication
of in-flight stability.

4,3.3 Cross Patch Parachute.

The cross patch or plus parachute if formed by crossing two rectangular
canopy sections in the shape of a cross and joining the intersecting areas.
The shroud lines are attached to the ends of each cross member as shown in
Figure 4.3-4. NOL has fabricated and flight tested a 35-foot cross patch
paractiste for use with the Arcas system. Design parameters for this parachute
are presented in Table 4-6.

During flight tests, this parachute exhibited a much slower descent
rate than the regular Arcas 15-foot Gentex parachute. At 200,000 feet the
cross patch parachute descent velocity was 275 ft/sec. while the regular
Arcas 15 foot parachute falls at 460 ft/sec. The cross patch, however, showed
an oscillation in descent velocity with a 10,000 foot period and a 25 ft/sec
amplitude at 200,000 feet. This pattern is a characteristic of breathing in-
stability. Typical fall rate results are shown in Figure 4.3-3. It appears that
an inflation aid, such as an inflatable torus would be required for high altitude
opening and breathing stability. Although this would defract from the
theoretical ballistic coefficient to some degree, the resulting fall rates should
still be quite good. The simplicity of design and fabrication for the cross
patch parachute should make it quite inexpensive.

4,3.4  Annular Ring Parachute.

For solid fabric parachute designs the hemispherical shape seems to
create the greatest drag per unit of projected area. Since the drag coefficient
of a circular disk, Cp = 1.15, is not significantly reduced by cutting a hole
in its center up to a diameter ratio of twenty~five percent, it may be advisable
fo consider a hemispherical design with an aperture cut in the crown to reduce
the magnitude of parachute gliding and oscillating. A vent hole in the center
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FIGURE 4.3~4 CROSS PATCH PARACHUTE
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TABLE 4-6

ARCAS CROSS PATCH PARACHUTE DESIGN PARAMETERS

Canopy material 2-3/4 momme silk

Panel Length

Panel Width

Fabric Area

Fabric Density

Fabric Weight

Shroud Line and Fittings Weight
Total Parachute Weight
Payload Weight

Total Weight

Cp (210 ft/sec @ 180,000 ft)
Cp (180 ft/sec @ 170,000 ft)

Ballistic Coefficient

35 ft.

9 fi.
549 fi. 2
2.23 x 1073 Ib/ft2
1.40 Ib
1.75 b
3.15 Ib.
4.60 lb.
7.75 lb
0.464
0.447

0.026 Ib/ft2
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of the canopy provides a flow of air into the normally turbulent flow above
the crown. This short circuits the collapsing air stream and increases the
parachute stability. As long as the aperture diameter is kept below 25
percent of the flying diameter, the stability of the parachute should be
significantly improved with no reduction in the drag coefficient or drag
based upon fabric area. Although the drag decreases as the diameter of

the center hole increases beyond 25 percent, the drag coefficient based upon
the area of the resulting ring, hence fabric area, increases and reaches a
theoretical limiting value of 1.98 at a diameter ratio of 1,0. Figure 4.3-6
presents experimental data on the drag coefficients of annular flat plates for
increasing center hole diameter ratios.

The theoretical drag coefficient data indicates a maximum drag
coefficient based on fabric area occurs for an infinitely large inside and
outside ring diameter, i.e., a hoop with an infinitely large diameter.

This design is impractical since shroud line loads would increase severely as
the diameter of the parachute increases and the chute would collapse.
Although the center hole concept may not be considered as within the state-
of-the=art for high altitude rocketsonde parachute designs at the present
time, it might be considered for this application after suitable flight test
results under a special parachute evaluation program.

Parachutes based upon this center hole concept as shown in Figure 4.3-7
are called annular ring parachutes. These designs are promising although
they would require a positive inflation aid for the rocketsonde application.
To our knowledge there has not been any meteorological flights conducted
with this design.

4.3.5 Miscellaneous Geometric Porosity Designs.

There have been various other parachute designs with geometric porosity
proposed for high altitude meteorological rockets which have not as yet been
successfully flight tested. These designs include the wagon wheel and the
ring=sail parachutes as shown in Figures 4.3-8 and 4.3-9. It is expected that
most of these parachutes would require an inflafion aid, and the advantages
over the previously discussed designs is not obvious.
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FIGURE 4.3~8 WAGON WHEEL PARACHUTE
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FIGURE 4.3-9 RING SAIL PARACHUTE
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The vortex-ring parachute is based upon a rather unique concept.
The drag coefficient of a conventional flat~circular parachute is about 0.75
while that of a ribbon parachute generally averages around 0.50 to 0.55.
The parachute that holds the record so far as drag coefficient is concerned
is the vortex-ring parachute. The canopy of the vortex~ring is divided into
four separate panels which are tilted in flight in such a way that the para=
chute behaves like a four~bladed propeller == the panels deflect the air-
stream and cause the whole canopy to whirl. The turbulence that creates
drag also creates instability unless it is controlled and balanced. The
vortex=ring canopy takes advantage of this. The drag coefficient can be
as high as 2.00, and the oscillations are usually below five degrees. [t
is necessary to have a precision swivel between the payload and the canopy.
The swivel and the natural. complexity of the canopy add to the cost and
weight with the result that the vortex-ring chute is used only for specialized
applications.

Early flight tests of the Arcas rocket included some flights of the
vortex-ring parachute. In all cases, the vortex-ring parachute failed to
deploy and streamed to impact. 1t will probably be necessary to construct
the canopy panels so that they can be inflatable structures.
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4.4 Stokes Flow Ribbon Mesh Parachute.

4,4,1 General.

The Stokes flow ribbon mesh parachute with inflatable struts appears
to be a most promising subsonic decelerator to altitudes of 100 km. Wind
measurement analysis of this system was described in Section 3.2.9. The
canopy mesh is constructed from fine filaments or ribbons and the spaces
between these elements creates geometric porosity which is conducive to
stability. The small filament diameter or ribbon width takes advantage of the
Stokes flow region of low Reynolds number, Rg, and creates high viscous
drag. For Rg less than one, the drag coefficient is inversely proportional
to Re; and hence, the smaller the filament diameter, the greater the drag
coefficient. Both the theory developed by Asiro Research Corporation
and vacuum chamber tests conducted by NASA-Langley indicate that ballistic
coefficients can be achieved which are much less than 0.010 Ib/ft2. Theory
indicates that without a payload this design could descendas slowly as 400
meters per second at 100 km. Packaging techniques, inflatable braces, and
radar cross-section are factors which require further investigation.

The Stokes flow parachute design offers the primary advantage of a
reasonably slow descent rate for high altitudes. A secondary advantage is
that the drag coefficient decreases during descent to the lower altitudes so
that the terminal velocity does not slow down with decreasing alfitude as
much as for more conventional designs. Since there is a large amount of
geometric porosity, even for high altitude operation, stability characteristics
are significantly improved and severe oscillating and tumbling at high
altitudes should be eliminated. Deployment of the Siokes flow design requires
inflatable struts or braces which contain an inflation medium. Since para-
chute packaging volume is the primary limiting factor for small meteorological
rockets, the drag coefficient per unit packaging volume becomes a most
important factor. The Stokes flow parachute should be superior over all other
descent devices considered in this respect. However, shroud line tangling
may be a problem which must be solved since deployment will most likely be
from a spinning missile.
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4.4,2 Theoretical.
pul
For very low Reynolds number, R, = & <1 , the drag on an

object is approximately inversely proportional to the Reynolds number as
indicated by

k2 2
D =kulv = | _ A pu
Re 2
k2
where Cp = forR, < 1
Re
Symbols:
eul
Re Reynolds Number = —
P Air density
® Air viscosity
u Free stream velocity
| Characteristic length, i.e., length of
an object in the direction of flow
k; Constants related to object shape and size
Cp.. Drag coefficient referenced to object i
'l and reference area j
A Area projected normal to flow.
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For small Reynolds numbers viscous effects predominate and the
resulting drag is due to the fluid deformation and friction rather than
pressure differentials. Experimental data have been taken and corrections
have been made to Stokes law by Oseen, Wieselsherger and Prandtl for
the viscous drag on an infinite single cylinder, and the resulting Cp vs Re
is plotted in Figure 4.4-1,

It can be seen that exiremely high drag coefficients are obtained
when Reynolds numbers become small, i.e., for small diameter fibers or
thin ribbons.

When a series of single fibers or small elements are combined to
form a fish-net or grid geometry, actuator disc theory of fluid dynamics
can be used to estimate the overall drag coefficient of the network. The
network drag coefficient varies with the Reynolds number and the solidity
ratio, E, which is the ratio of the frontal area of the network, A, and
the frontal area of all the fiber, a, as E = a/A. For a particular value
of E, the network drag coefficient approaches that of a flat plat, i.e.,
Cpp = 1, as the solidity ratio is reduced. A typical plot of drag coeffic-
ient vs Reynolds number is presented in Figure 4.4-2. This figure indicates
that a parachute can be constructed from small elements with an 80%
porosity (E =0.20), and the drag coefficient is the same as for a solid
canopy for Rg below 0.8. Furthermore, as this system descends to lower
altitudes, i.e., high R values, the drag coefficient decreases so fall
rates do not decrease as much as for conventional parachutes with con-
stant drag coefficients.

4.4,3 Proposed Parachute Designs.

The concept of the Stokes flow ribbon mesh parachute is shown in
Figure 4,4-3. The parachute consists of a square canopy deployed and
rigidized by an x-shaped bracing system fixed diagonally into the square
net. There are two straight inflated thin walled brace tubes, each with
the length of a full diagonal, one fixed above the network and one below
it. The four sectional network sails between adjacent brace legs are
designed such as to provide upward bent conical surface when in operation.
The braces also provide the attachment point for the suspension lines for
the payload. The network or canopy is composed of a square angled net

made from aluminized mylar tapes approximately 0.100~inch wide and
0.00025=inch thick. The braces consist of 0,00025-inch thick mylar tubes,
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FIGURE 4.4-3 THE CONCEPT OF THE STOKES FLOW RIBBON MESH PARACHUTE
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and the suspension lines are nylon monofilaments with an 0.005-inch dia-
meter for the dart application and an 0,010~inch diameter for the Arcas
application.

Three parachute designs have been proposed by Astro Research
Corporation for application as follows:

1. Dartsonde Parachute
2. Dart Wind Drift Target
3. Arcasonde Parachute

The main design parameters are presented in Table 4-7,

Various methods have been proposed for pressurization of the
braces such as pressurized gas containers and liquid freon. However,
we would suggest the use of isopentane alcohol as used in the Robin
inflatable sphere applications. This material is easy to seal in a closed
container and has proven to be quite reliable in numerous flight tests.
[nflatable structures with isopentane routinely collapse at about 120,000
feet altitudes. This self collapsing feature is desirable for this application
to speed descent rates at the lower altitudes.

4,4.,4  Proposed Performance.

The flight performances for the three proposed parachute designs
are presented in Figures 4.4-4 through 4.4-6. The full lines represent the
descents of the fully deployed canopies. The dotted lines are estimates
of the descent rate after brace support tubes collapse. The dartdrifter
design remains subsonic almost up to 100 km (330,000 ft.). For higher
altitude subsonic operation, thinner materials than the 0.00025-inch mylar
are required. The total descent times for the three designs are as follows:

1. Dartsonde 34 minutes
2. Dartdrifter 93 minutes
3. Arcasonde 25 minutes

4,4,5 Test Data.

Chamber tests of the Stokes flow parachute concept have been con-
ducted by NASA-Langley by dropping models of various solidity ratios in
high altitude simulation environments. The major chamber test variables
are listed as follows:
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TABLE 4-7

PROPOSED PARACHUTE DESIGN PARAMETERS

Application Dartsonde Dartdrifer Arcasonde
Parachute Parachute Parachute
Canopy Side Length 3.58 m 3.58 m 10.4 m
Brace Tube Radius 18.10-3 m 14.1073m 37.1073m
Length of Suspension 7.6m - 22.1m
Canopy Weight 0.318 N 0.318 N 2.35N
Brades Weight 0.110 N 0.08 N 0.58 N
Suspension Weight 0.012 N - 0.13 N
Payload Weight 3.330 N - 31.10 N
TOTAL WEIGHT 3.770 N 0.398 N 34.16 N
Operating Altitudes 270 K* - 70K" 200 K' to O
82.4 km - 61 km to O
21.3 km -
Design Point 80 fps @ 150K* - 200 fps @ 200 K*
24.4 m/s @ 45.8 km 61 mps @ 61 km
Packaging Volume 13.75 in 3 16.1 in3 182.5 in3

2.25x 104m3  2.64 x 104m3  29.8 x 10~4m3
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Simulated Altitudes 100-, 125-, 150-, 165-x 103 ft.

Solidity Ratios, E 0.20, 0.10, 0.05
Reynolds Numbers, Rg 1.6 to 18.1
Mylar Ribbon Width 0.100 in

My lar Ribbon Thickness 0.00025 in

Grid Spacing 1, 2, 4in.

The canopy size was a 3-foot square, and the drag reference area was
? square feet. However, the slack ribbon mesh balloons upward and inward
between the braces during flight to reduce the projected flying area to 6.25
square feet. A summary of the test results is presented in Table 4-8. The
resulting drag coefficient data is plotted against Reynolds number in
Figure 4.4~7 and compared with the theoretical curves.

The experimental drag coefficients compare favorably with the
theoretical values, and for the lower Reynolds numbers are considerably
greater. This is most likely due to the added structural areas in the con-
structed models such as the bracing struts and taped edges of the canopies.
The 0.20 solidity ratio design resulted in the greatest drag coefficient,
since the other designs did not reach a Reynolds number low enough for
them to approach the flat plate drag coefficient, Cp = 1. The ballistic
coefficient dataq, W/CDA, for these tests are presented along with the
proposed Dartdrifter theoretical values in Table 4-9 for a solidity ratio of
E = 0.20. Although the experimental drag coefficient for E = 0.20
agrees extremely well with the theoretical, the ballistic coefficient is more
than twice as great. This is caused by the fabricated model having a weight-
to-area ratio of 2.4 times that estimated for the proposed model. No doubt
the estimated weight is quite optimistic, but since the chamber model is a
good deal smaller in size, it no doubt suffers a relative weight penalty.

4.4.6 Summary.
The Stokes flow ribbon mesh parachute appears to offer significant
advantages over the more conventional designs, especially for high altitude

(100 km) operation. The main advantage is a much greater drag per unit
weight and per unit packaging volume. Other advantages are stability and
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TABLE 4-8

SUMMARY OF TEST RESULTS AND MODEL WEIGHTS
FOR MODELS OF DIFFERENT SOLIDITY

Drag Reynolds Model Terminal Equivalent
Coefficient Number Weight Velocity Altitude
(1bs.) (ft/sec) (ft)
0.2 Solidity
.370 10.41 .JU10715 13.65 99,100
.517 4.73 010715 21.05 124, 800
722 2,58 .010715 28.00 145,400
.783 1.60 011458 35.65 163,400
0.1 Solidity
.200 11,68 .0095745 19.36 103, 300
.306 5.83 .0095745 25.81 124,600
.305 5.83 .0095745 25.92 124,800
.534 2.83 .0095745 30.77 145,400
736 1.69 .0095745 37.65 163,400
.733 1.68 .0095745 37.88 163,600
0.05 Solidity
.08%96 18.12 .0078540 23.76 99,100
.213 6.32 .0078540 28,00 124,600
.210 6.36 .0078540 28.29 124, 800
.337 3.23 .0078540 35.12 145,400
.576 1.76 .0078540 38.70 163,600
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a variable drag coefficient which permits more rapid descent rates at the
lower altitudes than constant drag coefficient systems. Smaller ribbon
widths might be utilized to obtain reduced Reynolds numbers so that flat
plate drag values may be approached with the solidity ratios below 0.20.
In this way even slower descents in the high altitudes may be possible.
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4,5 Ram-Air Decelerators.

4,51 General.,

The general principle of the ram=air decelerators is fo capture an
inflation pressure from the flowing air siream to positively and reliably inflate
the structure. An inlet is employed to achieve stagnation or total pressure
within the inflatable structure. This internal pressure is the sum of the
ambient air pressure and the dynamic pressure and is directed normal to the
inside surface of the siructure. Although the external pressures tending to
collapse the structure are also composed of both ambient and dynamic
components, the dynamic component is generally applied obliquely over
most of the external surface of the structure, hence the internal pressure
forces will always be greater and inflation is assured. Two advantages of
this technique are that a separate self-inflation system is not required and
the ratio between internal and external pressure is more constant at the
various altitudes during descent. This permits the use of a minimum thick-
ness and weight canopy.

4.5.2  Ballute Principle.

The Goodyear Aerospace Corporation pioneered in the development
of the Ballute in a series of steps which evolved as follows:

1. During experiments to decelerate, stabilize and
recover payloads at high altitudes and supersonic
velocities, drag was attained by towing a pressurized
sphere behind the recoverable payload. Although
drag was achieved, the sphere was violently unstable
in the subsonic and transonic velocity regimes.

2. To stabilize the sphere an inflated torus called a
burble fence was added to ensure flow separation
at a constant station. The burble fence progressed
from the original size of three percent of the sphere
diameter to about 25 percent as is employed in some
of the current Ballute designs.
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3. Ram=air inflation was used instead of canned
gas pressurization.

4. [sotensoid theory of pressure membrane design was
employed to permit minimum thickness films fo be
used. This is made possible by designing the
structure so that membrane siresses are nearly equal
in all directions over the entire Ballute surface.

A significant advantage of the Ballute is that is has relatively small inflation
inlets and takes a few seconds to inflate. Thus opening stresses for both the
structure and the payload are minimized. A typical Ballute is shown in
Figure 4.5~1. The major portion of the drag results from negative base
pressure rather than from direct frontal loads, This is indicated in

Figure 4,5-2. The center of pressure is, therefore, located quite a bit

aft and stability is enhanced. Historically, the burble fence design has trans-
itioned from a toroidal type, to a hexagonal and more recently to a square
type to improve stability and fabrication simplicity. An improvement in
descent rates has recently been achieved by increasing the included angle
at the leading apex of the Ballute to increase pressure drag.

4.5.3 Arcasonde Ballute.

The most recent ballute configuration tested on the Arcasonde system
has a 14=ft diameter with a 10-percent burble fence, as shown in Figure 4,5-3.
The body of the ballute is consiructed of 12 gores of 1/2-mil mylar. The
seams are butt and tape construction. Six gores are aluminized to provide
the necessary radar trackability. The burble fence also is made of 1/2-mil
mylar and is attached by lap seams and tape. Meridian straps that transmit
drag load to the instrument are flat woven nylon lacing stock attached to
the center of each gore with 1/2-mil mylar tape. The inlet assembly consists
of 12 bery!lium~-copper leaf springs mounted on a swivel plate. Specifications
for the Arcasonde Ballute are shown in Table 4~10,

Unlike a parachute, the Ballute is an impermeable pressure vessel
with the only opening a relatively small ram~air inlet. To prevent bursting
at deployment from expansion of air frapped within the packaged unit, a
perforated canister was developed for the Arcas to permit bleeding
off this residual air prior to deployment. Early versions of the Arcasonde
Ballute used 1/4-mil mylar but were found to be unreliable as a majority of
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FIGURE 4.5-1 BALLUTE CONFIGURATION (TYPICAL)
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FIGURE 4.5-2 BALLUTE DRAG FORCE DISTRIBUTION
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TABLE 4-10

ARCASONDE BALLUTE SPECIFICATIONS

Specification

Type BALLUTE
Fence Type
Material type
Material gage
Suspension system
Inlet assembly
Swivel assembly
Canister assembly
BALLUTE weight
Swivel assembly weight
Total Weight
BALLUTE diameter
BALLUTE volume
Inlet area

Frontal area

Packing density

-93 -

Arcasonde

12 gores - 80 - degree angle
6 sides

Mylar-clear-alum

0.00050 in.

(12) 50 in. straps

12 springs - 11.2 diameter
Mounted on needle bearings
Perforated

1.8% Ib

0.84 1b

2.731b

14 ft

878.03 cu ft

110 sq ft

169.7 sq ft

25,7 pcf



these units failed structurally at deployment. Reliability was subsequently
improved by the use of the heavier 1/2-mil mylar, but descent rates were
slightly faster than the standard Arcas Gentex parachute. The current
unit is 14~feet in diameter and has a ballistic coefficient of 0.060 lb/ffz.
However, telemetry signal dropouts have essentially been eliminated with
this design, although descent rates are not satisfactorily slow.

4,5.,4 Dartsonde Starute.

A small 7-foot Ballute-type decelerator has been developed for the
Loki Dart system. This decelerator has been designated as the Starute by
the U. S. Air Force and is essentially a scaled down version of the Arcas
Ballute. However, with the lightweight Datasonde instrument as the pay-
load, the Starute shows a significant improvement in descent velocity with
a ballistic coefficient of 0.030 Ib/ft2. n addition the deployment reliability
has been excellent, and the stability has essentially eliminated all of the
telemeiry signal dropouts. Figure 4.5-4 presents an illustration of the Loki
Starute. A comparison of typical telemetry records from a regular parachute
flight and a Loki Starute flight is presented in Figure 4.5-5. Loki Starute
specifications are presented in Table 4~11. A larger 12-foot Starute is
being developed under an AFCRL program to be used with the Instrumented
Super Loki Dart system to obtain even slower descent rates in the higher
altitudes to 75 km for improved rocketsonde wind and temperature measure-
ments.

4.5.5 High Speed Ballutes.

Both the Arcasonde and Dartsonde Ballutes have been designed for
medium to low speed subsonic decents from altitudes cf about 200,000 feet
down. The geometries of these designs will most likely have to be changed
for higher altitude and higher speed operation to obtain optimum performance.
The leading apex angle and the separation distance between payload and
Ballute become important drag determining factors in the higher speed regimes.
In subsonic flow the pressures and drag coefficients decrease slightly with
increased separation distance. At supersonic speeds a discontinuous variation
in pressure profile and drag coefficient is obtained by varying the separation
distance. At close distances the Ballute causes divergence of the forebody
(payload) wake, and the resulting pressures and drags are low. As the Ballute
is moved aft, the forebody wake converges and pressures and drag increase.

A separation distance of at least 4 forebody diameters is required to realize
maximum drag in the low supersonic flow regimes. Wind tunnel measurements
from Mach 1.57 to Mach 4.65 indicate that included apex angles should be
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TABLE 4-11

DARTSONDE STARUTE SPECIFICATIONS

Specification

Type BALLUTE

Fence type

Material type

Material gage
BALLUTE weight
Swivel assembly weight
Total Weight

BALLUTE diameter

Flying area
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Dartsonde

8 gore

4 sides
Mylar-clear-alum
0.00025 in

0.316 lbs

0.026 Ibs

0.342 lbs

7 ft

49 sq ft



€5° to 90° to achieve maximum drag. The Ballute may be useful in
meteorological rocket applications to altitudes significantly above
200,000 feet, but descent velocities will most likely be in the transonic
and supersonic regimes at altitudes approaching 300,000 feet.

4.5.6  Biconical Decelerator.

The Naval Ordnance Laboratories are currently developing a
ram-air inflated biconical decelerator for high altitude meteorological
applications. This decelerator is in the form of two inverted truncated
cones of differing apex angles as shown in Figure 4.5-6. This design
increases the base area and hence the base drag for a given amount of
canopy material as compared with the Ballute, Since in the subsonic
flow regime a major portion of the Ballute drag is due to base pressure,
the biconical geometry capitalizes on this fact and should be more efficient
than the Ballute. The basic shape should be inherently stable, and the
flow separation should be tripped consistently at the top edge.
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FIGURE 4.5-6 N.O.L. BICONICAL DECELERATOR

- 99 «



4,6 Summary .

A comparison of the drag efficiency of the various decelerators
for which flight test data are available may be made by comparing the
ballistic coefficients of the decelerators alone without payloads as follows:

Decelerator Ballistic Coefficient
(Ib/ft2)

Arcas Gentex Parachute 0.024

Loki 7.6" Irvin Parachute 0.013

NOL é' Square Parachute 0.008

Arcas D=G =B Parachute 0.016

Arcas Cross Patch Parachute 0.013
Dartsonde Starute 0.009

Stokes Flow Ribbon Mesh
Parachute (Theoretical) 0.001

[t appears that the only decelerator which has a chance of maintain=
ing subsonic descent velocities to altitudes as high as 100 km is the Stokes
flow ribbon mesh parachute. The ram=-air inflated decelerators may prove
useful to the high altitudes if transonic and supersonic velocities are
permissible with the given sensor system.
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5.

TELEMETRY AND TRACKING

5.1 General.

Telemetry and tracking have not proven to be a problem for the
60 km rocketsonde flights since the equipment in current use at almost all
of the missile ranges has been sufficiently reliable and accurate for this
application. The tracking accuracy requirements for wind and altitude
determination and the telemeiry accuracy requirements for the temperature
data are not particularly stringent. The rocketsonde decelerators offer
targets of high radar cross-section and are easy to frack - once acquired.
Chaff clouds offer large radar targets and are simple to acquire and frack
for at least 50,000 feet of descent before they disperse into clusters and
the radar starts searching for the high spots within the cloud.

The only significant problem experienced with data acquisition from
rocketsonde flights has been an occasional late acquistion of either radar
track of the decelerator or telemeiry reception of the temperature data.

The dart vehicles offer a relatively small radar target going into apogee,

and radar with less capability than the AN/FPS-16 will probably Tose

track until the payload deploys. Although the radar signal returns from

the deployed decelerator is very good, acquisition may be a problem, due

to the narrow beam width of tracking radars, unless an uptrack is maintained.
With experienced operators this has not been a problem, and generally only
a thousand or so feet of data are lost due to later radar acquisition. The
1680 mHz telemetry signal is generally weaker during the upirack because

of antenna pattern nulls toward the rear of the vehicle. Sometimes the signal
is lost during upirack, and a late acquisition of the temperature data after
deployment occurs. Most of the experienced operators acquire the GMD
track within a few seconds after deployment. This generally does not cause
a loss of temperature data since the thermistor is still in the process of cooling
to atmospheric temperature during this time period.

For the more specialized high altitude experiments data acquisition

becomes a more significant problem. Passive falling sphere experiments require
precision in the radar data - the equivalent of the FPS-16 quality. In fact,
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if a more precise radar is used, the data accuracy would be better and the
altitude of useful data could be extended upward. Also, without a radar
upirack of the vehicle, acquisition of the sphere could be a problem.
Accelerometer falling spheres require rather precise telemetry accuracy,

and so far have used IRIG channels. The pitot probe requires rather precise
telemetry accuracy and tracking data. The vehicle velocity enters into

the data reduction equations as does the telemetered ram pressure information.
However, the Denpro system discussed in Section 3.5 used GMD~2 telemetry
and tracking data with reasonably good results. [n this application, tele-
meiry modulation rates were increased to 1,000 pps and the GMD=-2 velocity
and altitude data compared favorably with FPS-16 radar data. The grenade
experiments require quite specialized ground-base data acquistion equipment
as described in Section 3.6. Many of the other high~altitude experiments
require a greater frequency response in the telemetry modulation and the
standard 20 to 200 rps AM of the GMD systems is not adequate. In these
cases FM may be used with GMD system or pulse rates may be increased.
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5. 2 Rudcl'.

5.2.1 General.

There are a number of radars which are currently in use at the various
missile ranges for various specialized purposes such as surveillance and range
safety, acquisition, beacon tracking, skin fracking and deep space probe
tracking. These radars represent various stages in the state~of-the-art in
radar development and operate in various frequency bands as shown below:

RADAR FREQUENCY BANDS

Band Center Frequency
(mHz2)
L 1,300
S 2,700
C 5,500
9,000

The L-band systems are generally used for surveillance and have not
been found adequate to track meteorological rockets. The X-, S-and C-
band radars have been the most useful for meteorological rocke t applications.
The X-band M-33 modified (by WSMR) is a mobile unit which has been used
to track meteorological payloads at remote sites, but is incapable of uptrack-
ing the vehicles. The S-band SCR-584 Mod 2 radar has been used extensively
and is adequate to skin track the Arcas to about 130,000 ft but cannot track
the Loki Dart. This radar is certainly adequate to frack rocketsonde payloads.
The C-band FPS-16 is the most used and most desirable of the commonly available
radars. This radar is capable of tracking the Loki Dart thru apogee and the
precision is good enough to reduce passive falling sphere density data to 2%
accuracy at 90 km. The FPS=16 is also capable of tracking a 2-inch diameter
N~inch long dart (Viper Dart System) to an altitude of about 430, 000 feet.
More accurate and powerful radars than the FPS-16 exist, but they are located
at a limited number of sites and are not generally available for meteorological
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soundings. Doppler radars have been found useful in the development
of meteorological rocket vehicles, but the range limitations of the common
sefs restrict their use from tracking the payloads.

5.2.2 Radar Descriptions.

A summary of the technical characteristics of typical radar systems
is presented as follows:

5.2.2.1 Radar Set AN/SPS-12.

Radar Set AN/SPS-12 is a medium-range surveillance radar
equipment designed to detect aircraft and surface vessels. Target range and
bearing data are obtained for presentation on associated ppi units. Radar
Set AN/SPS~-12 transmits and receives pulses of r~f energy in the frequency
range of 1250 to 1350 mc (L band).

Radar Set AN/SPS-12 requires three-phase, 60-cycle, 440
volt input power at approximately 6000 watts. The circuits in all units
(except the radar modulator high-voltage-supply circuit) operate from
single-phase, 60-cycle, 115-volt power supplied by the power distribution
transformer, which is connected across two lines of the three-phase 440-volt
input. The technical characteristics of Radar Set AN/SPS-12 are given in
Table 5-1.

5.2.2.2  Radar Sets AN/MPS-19.

Radar Sets AN/MPS~19 are modified, mobile units used for
acquisition and weather observation. Table 5-2 lists the characteristics of
the unit used for acquisition and Figure 5.2~1 is a block diagram of the
AN/MPS-19 equipment. The AN/MPS=19 provides data outputs in the following

forms:

1. Synchro voltages representing slant range and
azimuth and elevation angles.

2. Potentiometer voltages representing slant range
and sine and cosine functions of azimuth and

elevation angles.

3. Precision digital data representing slant range
and azimuth and elevation angles.
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Transmitting System
Frequency
Transmitter
Peak r-f power
Pulse rate
Pulse length
Modulator type

R-f lines

Antenna System
Type
Beam width
Polarization
Azimuth slew rate

Range Data
Maximum range
Minimum range
Range indicators

Receiving System
Antenna coupling
I-f frequency
I-f bandwidth

Local osc freq control

Receiver mds
Sweep ranges

Data Readout

1250 to 1350 mc

Tunable magnetron

500 kw

300 or 600 pps variable +5%

4 psec at 300 pps, 1 psec at 600 pps
Hydrogen-filled thyratron
Waveguide (3-1/4 by 6-1/2 inches)

Cosecant-squared reflector
3° horizontal; 30° vertical
Vertical

2-1/2 to 15 rpm, or manual

200 miles
400 yards
4, 20, 80 miles at £0.5%, 200

TR & atr cavities, crystal mixer, stc
30 mc
0.5 mc at 300 pps, 2 mc at 600 pps
Afc
-100 dbm
400 to 8000 yards, 1 to 20 miles,

4 to 80 miles, and 4 to 200 miles

One A scope and up to six ppi
Sweep expander 1000 yards per inch up to 80-mile range

TABLE 5~1 Radar Set AN/SPS-12, Technical Characteristics
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Transmitting System

Frequency range 2700 to 2900 mc

Peak power 500 kw

Average power 164 w (single pulse), 492 w (triple
pulise)

Ovutput power tube Magnetron

Pulse width 0.8 psec

Prf 300 to 2000 cps; beacon 410 cps

Receiving System

I-f frequency 30 mc
Bandwidth 3 mc
Dynamic range 80 db
Noise figure 4 db
Sensitivity 108 db

Antenna System

Diameter 8 ft (parabolic)
Beam width 3° (half power)
R-f transmission line Rectangular waveguide
Power capability 500 kw
Antenna System (Continued)
Vswr 2 db
Line loss, receiving 3db
Azimuth coverage 360°
Elevation coverage -15° to 89.5°

Ranging System

Maximum range 360, 000 yards
Minimum range 500-1000 yards
Maximum tracking rate 28, 000 yards/second
Maximum slew rate 25, 000 yards/second

System Facts
Accuracy Azimuth, 1 mil
Elevation, 1 mil

System Power
Load 3 phase, 110 volt, 12 kw (util)
3 phase, 208 volt, 10 kw (oper)

TABLE 5-2 RADAR SET AN/MPS~19, TECHNICAL CHARACTERISTICS
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ELEVATION

UNIT ""'""”'}
|
'
!
AR LINK  |TOLSE | TRANSMITTER R-F TRANS. SIGNAL
SYSTEM PULSE 2 SYSTEM SYSTEM Insc'o SIGNAL
AZ 8 EL 30 CPS
BEACON ERROR VOLTAGES| REF SiG.
CODER GATE
MOOULATOR TRIGGER
BEACON AFC GATE RECEIVER ANTENNA
POSITIONING
SYSTEM SYSTEM
VIDEO| laGC
STC GATE
400KYD. SWEEP GATE
400KYD. SWEEP VID. TEST SIG.
SYNCHRONIZING 32KYD. SWEEP GATE | RANGE INDICATING AGC 30 CPS
SYSTEM 32KYD. SWEEP SYSTEM =~ TERROR SiG.
2KYD. SWEEP GATE
] NEG VIDEO vID SIiG.
ART AGC_TRACKING GATES
ANT. AZ. POS.
TRIGGER PRI pos.
1 SysTEm |_______ o
IIFF TRIGGER
FIXED B2KC PULSES I
PPI_TRIGGER
66 _USEC GATE
[mMaP vioEO
AUTOMATIC 2 KYD BRIGHTENER VIDEO FROM
RANGE TRACKING PPI_TRACKING GATE MAPPING SYSTEM e
SYSTEM
Q PPI_TRIGGER
RANGE RATE / RANGE

SLANT RANGE COMPUTER
AIR_LINK CONTROL PANEL

FIGURE 5.2-1 Radar Set AN/MPS-19, Block Diagram
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5.2.2.3  Mod (Il) Radar.

The Mod 11 Radar, is an extensively modified and rehabilitat-
ed SCR-584 Radar. Mod 1l is an automatic angle and range tracking radar
designed to provide the following:

1. Synchro voltages representing slant range and
azimuth and elevation angles.

2. Potentiometer voltages representing slant range
and sine and cosine functions of azimuth and
elevation angles.

3. Precision digital data representing slant range
and azimuth and elevation angles.

Improvements over the SCR-584 radar include: dual local
oscillators for skin and beacon tracking, A-scope range presentation, inter-
mediate servo system for smoothing purposes, tunable S-band magnetron,
output power attenuation, traveling wave tube r=f amplification in the
receiving system, multipulse and coding capability, nutafing antenna feed
to allow vertical or horizontal polarization, waveguide transmission line,
and pulse repetition frequency selection.

In general, the Mod Il provides recorded metric data for
range users, real-time position data for range safety or guidance, and target
acquisition data for other ground instrumentation equipment.

Table 5-3 list the technical characteristics of the system.

5.2.2.4  Radar Set AN/FPS-16.

The AN/FPS-16, is a C-band, high precision, monopulse
tracking radar. The accuracy of the AN/FPS=16 is such that the position data
obtained from point-source targets has azimuth and elevation angular errors
of less than 0.1 mil rms and range errors of less than 5 yards rms with a signal-
to=noise ratio of 20 db or greater. The AN/FPS-16 provides data outputs in
the following forms:
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TABLE 5-3 MOD Il Radar,

Technical Characteristics

Transmitting System
Frequency range
Transmitter
Peck r-f power
Average power
Pulse width
Prf

Pulse shape
Modulator type

Receiving System
I-f frequency
Sensitivity
Noise figure
Bandwidth
Type
Antenna coupling

Antenna System
Type
Focal length
Beam crossover
Gain
Beam width
Drive
Side lobe location

2650 - 2850 mc

Tunable magnetron

250 kw

0.5 kw

0.75 psec

205, 341, 366, 410, 467, 569, 682,
732, 852, 1024, 1280, and 1707 cps

Square

High vacuum

30 mc

-102 dbm

7.5db

2mc

Superheterodyne

R-f amplifier into single-ended crystal

10-foot parabolic

35.6 inches

80% or 50%

37 db

2,5°

2/4 hp in each axis

Ist, 4.12°; 2nd, 6.22°
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TABLE 5-3 MOD Il Radar, Technical Characteristics (Continued)

Antenna System (Continued)
R-f transmission line

Type of feed
Type of scan
Scan frequency
Polarization

Ranging System

Maximum range

Minimum range

Maximum tracking rate
Maximum slew rate

Master oscillator frequency
Range tracking

Skin track range

Tracking gates

System Facts

Synchro inputs
Tracking rates

Slewing range
Range accuracy
Range indicators

Other presentation

System Data Readout

Timing Box

Cursor scale camera

Rectangular waveguide with transition
to rigid 7/8-inch coaxial at azimuth
rotary joint

Nutating

Conical

30 cps

Vertical -circular-horizontal

768, 000 yards, beacon track

500 yards

8000 yards/second (automatic)

20, 000 yards/second (manual)

82 ke

Manual, rate aided, and automatic

65 statute miles, 1-square-meter target
12, 0.5 mil/second

Azimuth, 1:1; elevation, 1:1

20°/second, azimuth; 8°/second,
elevation

20°/second, azimuth; 20°/second,
elevation

20, 000 yards/second, range

£10 yards

3 A-scopes; 2000 yards, 32, 000 yards,
full -tracked ranges

Ppi

One 35-mm camera photographs the
following: range timing, camera
pulses from radar cameras, sync
pulses from programmer, and signal
tone from programmer

Azimuth and elevation cursor scales on
antenna mount photographed with
35-mm Mitchell camera similar to
that on MPS-19; resolution £0.2 mil
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TABLE 5-3 MOD Il Radar, Technical Characteristics (Continued)

System Data Readout (Continued)
Scope camera

Boresight camera

Digital readout

System Power
Load

System Data Output
Azimuth, potentiometer type
Number of turns
Wiper resistance
Brush load required
Resistance/quadrant
Elevation, potentiometer type
Number of turns
Wiper resistance
Brush load required
Resistance/quadrant
Range, potentiometer
Number of turns
Linearity
Brush load
Resistance
Wiper resistance

2000-yard J-scope photographed with
35-mm Mitchell camera

40-inch focal length (35-mm Mitchell
camera)

Azimuth, elevation, range, and timing
recorded on 1/2-inch magnetic tape

3 phase, 110 volt, 12 kw

Sine-cosine
1

10 kilohms
0.25m

15 kilohms
Sine-cosine
1

10 kilohms
0.25m

15 kilohms
192, 000 and 384, 000 yards
10

0.02%
0.25 kilohm
20 kilohms
10 kilohms
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1. Synchro voltages representing slant range
and azimuth and elevation angles.

2, Potentiometer voltages representing slant
range and sine and cosine functions of
azimuth and elevation angles.

3. Precision digital data representing slant
range and azimuth and elevation angles.

The AN/FPS=16 radar also provides real-time, present-
position analog data for range safety use.

Table 5~4 lists the technical characteristics of the system.
All random errors listed in the table are referenced to beacon operations.
In skin tracking, increased angular dispersion will result from either target
glint, when the angular physical dimensions of the target exceed the
resolutions of the radar, or from thermal noise at small signal-to~noise ratios.
According fo the beam width of the radar, listed angle tracking performance
is expected to be maintained down to elevation angles of approximately 0.5°,
At smaller elevation angles, tracking errors of increasing magnitude will
occur and can be corrected only by means of boresight camera data.

5.2.2,5  Radar Set AN/FPQ-11.

These radars, based on the MPS~19 design, have been recon-
figured to improve and extend tracking capability by the addition of 14 ft.
diameter parabolic antennas; precision torque drive pedestals; new receiving
systems; wide range gate; a selectable 0.25 us pulse; auxiliary frack system
and digital data encoders and by complete replacement of the antenna
positioning system.

The technical characteristics are presented in Table 5-5,

5.2.2,6 AN/MPS 504 Surveillance Radar.

This radar provides continuous surveillance to a maximum
ground range of 200,000 yards. 1t is used for range safety and as an aid in
recovery missions. The technical characteristics are presented in Table 5-6.
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TABLE 5-4 Radar Set AN/FPS-16, Technical Characteristics

Transmitting System
Frequency range

Peak power
Average power
Output power tube
Pulse widths

Prf

Frequency accuracy
Pulse shape

Modulator
Normal operating power

Receiving System
Type

High power: 5480 +30 mc

Low power: 5480 to 5825 mc

1 megw (fixed)

1.7 kw

Magnetron

0.25, 0.5, and 1 psec

142, 341, 394, 366, 467, 569, 682,
732, 853, 1024, 1280, and 1364 cps

1.5 mc

Square

High-vacuum type

250 to 300 kw with tunable magnetron;
750 to 900 kw with fixed magnetron

Superheterodyne
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TABLE 5-4: Radar Set AN/FPS-16, Technical Characteristics (Continued)

Receiving System (Continued)
|-f frequency
Sensitivity
Noise figure
Bandwidth
Dynamic range
[-f noise figure

Ranging System
Maximum range
Minimum range
Maximum tracking rate
Maximum slew rate
Bandwidth (maximum)
Acceleration
Master oscillator frequency
Oscillator stability
Range accuracy
Tracking gates
Target designation
Range tracking
Tracking noise
Dispersion

Antenna System
Type
Feed
Focal length
Beam crossover
Gain
Beam width

Polarization
Tracking point

Drive

Antenna temperature
Side lobe location

Capture area

30 mc

-99 dbm

11 db

1.8 and 8 mc (narrow-wide)
~-93 db with stc

6 db

1, 000, 000 yards

500 yards

10, 000 yards/second

40, 000 yards/second

10 cps

4000 yards/second?

82 ke

1in 108

15 yards

0.5, 1, 1.5 psec

Manual or automatic modes
Manual, rate aided, or automatic
Angle std deviation, 0.1 mil
Range std deviation, 1.5 yards

12-foot parabolic reflector

4-horn monopulse

48.4 inches

0db

43 db

1.2°, r-f axis to 1/2 power point,
horizontal and vertical

Vertical, horizontal, circular

Center of main lobe (no crossover point)

Azimuth: two 2-hp motors
Elevation: one 2-hp motor
40°K above 50° elevation (dark sky)
1.72° (1st)
2.62° (2nd)
7 .88 square meters
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TABLE 5-4 Radar Set AN/FPS-16, Technical Characteristics (Continued)

Antenna System (Continued)

Type of scan

R-f transmission line
Line loss receiving
Line loss transmitting

System Facts

Azimuth coverage
Elevation coverage
Range accuracy
Serial readout rate
Granularity

Pulse duration

Rise time
Tracking rates
Slewing rates

Accelerations

Bearing accuracy

Range on 1 square meter

Random noise errors in output

data
Systematic errors

System Data Readout

Data box

Range scope

Monopulse
Rectangular waveguide
1.3db

2.3db

360°

-10° to 190° (tracking -10° to 85°)

15 yards

100 pps maximum

+1 yord

0.2 psec minimum

1.0 psec maximum

0.1 psec

Azimuth: 42°/second

Elevation: 22.5°/second

Range: 10, 000 yards/second

Azimuth: 45°/second

Elevation: 22.5°/second

Azimuth: 45°/second

Elevation: 24°/second

Range: 40, 000 yards/second

Azimuth: 0.1 mil

Elevation: 0.1 mil

272, 000 yards

Slant range: og 1.5 yards

Azimuth and elevation: op, og 0.1 mil

Zero setting errors: 10.7 to 2.0 yards

Drift errors due to external beacon delay
variations estimated to be less than
100 feet

Total mechanical errors: 0.04 mil rms

35-mm Mitchell camera for the follow-
ing: azimuth and elevation synchro
dials, timing lights, sync pulses,
and signal tone

35-mm Mitchell comera photographs

=115~




TABLE 5-4 Radar Set AN/FPS-16, Technical Characteristics (Continued)

System Data Readout (Continued)
Range scope (Continued)

Nixie readout

Pedestal cursor dial

Ungated video
Consolidated recorder

Sanborn recorder

Magnetic tape system

System Power
Load

2000-yard segment of range and
72, 000 yards synchro

35-mm pulse-operated flight research
camera: azimuth, elevation, and
range; timing; model number; and
radar mode of operation

Azimuth: 35-mm flight research camera

Elevation: 35-mm flight research
camera

Boresight: 80-inch EFL lens with 35-mm
research camera

Tektronix scope, 2000-yard segment of
range, 35-mm flight research camera

Agc, WWYV, range timing, radar timing,
radar camera shutter pulse, CHU

Four channels; can record any four of
the following: agc, 2000-yard range
synchro output, timing, sync pulse,
WWYV, CHU, azimuth and elevation
error, and range error signals

Records binary output of range, azimuth,
timing, ozimuth error, and elevation
error

3 phase, 120/208 volt, 100 kva

-116 -




Table 5-5 Radar Set AN/FPQ-11, Technical Characteristics

Transmitting System

Frequency

Peak Power

Normal operating power
Pulse repetition frequency
Pulse width

Pulse shape

Coding capability
Modulator

RF lines

Line loss

Antenna System

Type

Drive

Feed

Gain
Polarization

Beam width

Tracking point

Sidelobes

Azimuth coverage
Elevation coverage
Angular tracking accuracy
Slew rates

Range System

Maximum range

Minimum range

Skin Track range

Range accuracy

Master oscillator frequency
Oscillator stability
Tracking gate

Maximum range track rate

2,700 - 2,900 MHz tunable

500 kW minimum

550 - 850 kw

Both Radar & Beacon 410, 512, 585 pps
0.25 ps, 0.8 ps, selectable

Square

1 to 3 pulses

Soft tube

Rectangular waveguide
Less than 1 dB

Parabolic 14 ft diameter

dc torque motors

Conical scan, (30 Hz)

39 dB

Vertical or horizontal, or RH circular
or LH circular (remotely selectable)
1.8° axis to half power points

50% or 80% (manually selected prior to test)
At least 20 dB down from Main lobe
Plus or minus 360°

-1.510 181.5°

0.15 mils

Greater than 40°/sec in both axis

1,999, 500 yards, Verlort system

300 yards in narrow pulse

50 nmi on 6" sphere

0.01% (same as the MPS-19 accuracy)
81.946,427 kHz

2.5x 103

0.3 ps

16,000 yd/s
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Table 5-5 Radar Set AN/FPQ-11, Technical Characteristics (continyed)

Range System (continued)
Range slew rate

Range fracking
Target acquisition

Receiving System

Frequency

Type

Antenna coupling
Noise figure
Minimum discernible
signal (MDS)
Bandwidth

IF
Image rejection
Range indicators

Transmitter

Frequency
Power

Pulse width
Repetition rate
Type output tube
Type modulator
Recovery time
Delay

40,000 yd/s/s

Manual, automatic, rate aided
MPS=19 radar, MK~51 optical tracker,
infrared tracker, CCTV and other
FPQ-11 radar.,

2,650 - 2,950 MHz

Superheterodyne

Parametric amplifier (15 MHz bandwidth)
Better than 2 dB

With parametric amplifier - 115 dBm
Without parametric amplifier - 102 dBm
5.6 MHz, 2.6 MHz (selectable with pulse
width)

25 MHz

20 dB down or greater by SSB mixer

Three 5 in A-scopes, single sweep, os
follows: Total range according to PRF
approximatd y 365,000 yards, 32,000
yaras sween centeres arounc targoet pre-
sentation, triple sweep, 2,000 yd
segment of range including target pre-
sentation, the three sweeps displaying
beacon video, radar video and summed
video,

2700 - 2950 MHz

150 W (minimum)

0.5 plus or minus 0,1 ps
1-2000 pps

Triode cavity

Solid State

Less than 50 ps

2}15 nominal
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Table 5-5 Radar Set AN/FPQ-11, Technical Characteristics (continued)

Power Supply

Primary power source
Primary power input
Internal power source

Mechanical

Size
Form

Weight
Pressurization

Environmental

Temperature
Vibration
Shock

Acceleration

6.9 Vdc plus or minus 10%
Approximately 9 W

5 HR~1 Yardney Silvercels, life
approximately 60 min.

25.5 in>

3&3/4x3x2&1/4in excluding
mounting flange

Less than 2 |b

15 psi

-20 10 70° C

5-2000 ¢/s at 10g, 3 min sweep
100g all planes

80g all planes
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Table 5-6 Radar Set AN/MPS-504, Technical Characteristics

Transmitting System

Frequency

Peak Power

Normal operating power
Pulse repetition frequency
Pulse width

Pulse shape

Modulator

RF lines

Antenna System

Type
Beam width azimuth
Beam width elevation

Range System

Maximum range
Minimum range
Range accuracy

Receiver System

Type
Minimum discernible signal

Bandwidth
Range indicator

Azimuth coverage
Elevation coverage

2700 - 2900 MHz

500 kW minimum

600 kw

410 pps

2 ps

Square

Soft tube

Rectangular waveguide and rigid
coaxial cable

Half parabolic cylindrical reflector
20
159

200, 000 yds
2,000 yds
plus or minus 1,000 yds

Superheterodyne
-97 dB

1.2 MHz

PPl scope, provided with 3 sweep
ranges, 50,000, 100,000 and 200, 000
yds.

360°

~3 to 45° dependent of the mechanical
tilt of the antenna

- 120 -




5.2.2.7 NASA Long-Range, S-Band (SPANDAR).

The NASA Long—Range, S-Band, located on the Wallops
Mainland area directly opposite Wallops Island, is a high-powered, conical-
scan, tracking radar. The radar employs a 60~foot parabolic reflector on a
95~foot mount. Features of the radar include: at least 5 megawatts peak
power, parameiric amplifier in the receiving system, a digital data system,
a doppler system, and a 5000-mile range for beacon tracking. The estimated
skin-tracking range for a 1-square-meter target is approximately 600 statute
miles. Table 5-7 lists the technical characteristics of the radar.

The NASA Long-Range SPANDAR provides data outputs in
the following forms:

1. Synchro voltages representing slant range and
azimuth and elevation angles.

2. Potentiometer voltages representing slant range
and sine and cosine functions of azimuth and
elevation angles.

3. Precision digital data representing slant range and
azimuth and elevation angles.

5.2.2.8  Radar Set AN/FPQ-6.

The AN/FPQ-6 is a pulse radar capable of nonambiguous
range measurements of targets at ranges up to 32,000 nautical miles.

Features of the AN/FPQ~6 system include: built-in
acquisition features in the ranging equipment; an auxiliary nonreferenced
range system (AUXTRACK); a C=scope with video integrator to erhance
long-range target acquisition; rapid slewing circuits with added tracking
features; and four A-scopes displaying range increments.

The transmitter is convertible to doppler measurements,
pulse compression, and other more elaborate coherent transmitter-receiver
techniques. The fransmitter frequency synthesizer and multiplier may be used
with minor variations to drive r-f output stages covering other r-f frequency
bands, such as L, S or X bands.
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Transmitting System

Frequency
Transmitter

Peak r-f power
Average power
Pulse rate

Pulse length

Prf

Frequency stability

Frequency resolution
Pulse shape

Antenna System

Type of reflector
Focal length
Beam crossover
Gain

Beam width
Weight

Drive

2700 to 2900 mc
High-power klystron

5 megawatts

10 kw

256 to 390 pps (in 4 steps)
1, 2, and 5 psec

256, 303, 328, and 390 cps
1 part in 106 per month

5 parts in 107 per day

1 mc

Square

60-foot parabolic reflector
25 feet 1/2 inch

1.5db

52.8db

0.39°

84 tons (antenna & tower top)
Two 32 hp in each axis

TABLE 5-7 SPANDAR, Technical Characteristics
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TABLE 5-7 SPANDAR, Technical Characteristics (Continued)

Antenna System
Antenna temperature
Side lobe location
Side lobe height
Null depth
Type of feed
Type of scan
Scan frequency
Polarization
R-f transmission line
Vswr
Line loss receiving
Line loss transmitting

Receiving System
Frequency range
Receiver type
|-f frequency
Image rejection
Sensitivity
Noise figure
Bandwidth
Low-noise device
Dynamic range

Ranging System
Maximum range
Minimum range
Maximum tracking rate
Maximum slew rate
Master oscillator frequency
Range accuracy
Tracking gates
Data bits
Serial readout rate
Granularity
Digital "1"
Digital "O"

30°K (dark sky)

st 0.68°; 2nd 1.04°
13 db down

16.8 db

Rotating circular horn
Conical

30 cps

Circular, vertical, horizontal
Rectangular waveguide
1.18

0.8 db

2db

2600 to 2900 mc
GE FPS-6B

30 me

18 db down PAR
-116 dbm

3db

1.3 mec - 650 ke

Parametric
-117 db

10, 000, 000 yards
1000 yards

10, 000 yards/second
40, 000 to 500, 000 yards/second
82 ke

+25 yards

6 & 18 psec

20

50 pulses/second
%10 yards

-3 vdc

=11 vdc
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TABLE 5-7 SPANDAR, Technical Characteristics (Continued)

System Facts
Tracking rates Azimuth: 6°/second

Elevation: 6°/second

Range: 10, 000 yards/second

Slewing rates Azimuth: 15°/second

Elevation: 15°/second

Range: 500, 000 to 40, 000 yards/second

Accelerations Azimuth: 7°/second?
Elevation: 9°/second
Accuracy Azimuth: %1 mil

Elevation: %1 mil
Range: %25 yards

Azimuth coverage 360°

Elevation coverage 0° to 90°

Elevation travel -15° to 90°
Capture area 1261.78 square feet

System Power
Load 3 phase, 208/440 vac, 500 amp
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The antenna mount has the following capabilities: precise
data takeoffs; high and low servo response bandwidth capability with high
gain across the variable range; high torques to counteract wind forces and
achieve high accelerations; hydrostatic bearing in azimuth and phased ball
bearings in elevation to provide iracking smoothness at extremely low and
high angular velocities; and stability with thermal changes. Table 5-8 lists
the technical characteristics of this radar system,

The AN/FPQ~6 provides data outputs in the following forms:

1. Synchro voltages representing slant range
and azimuth and elevation angles.

2, Potentiometer voltages representing slant
range and sine and cosine functions of

azimuth and elevation angles.

3. Precision digital data representing slant
range and azimuth and elevation angles.

3.2.2,9  Velocimeter, Model 10A, Doppler Radar.

The Velocimeter, Model 10A, is a mobile doppler radar
which generates a continuous-wave radio-frequency signal that is radiated
from a directional fransmitting antenna. The part of this transmitted signal
that sirikes a target is reflected back to a directional receiving antenna.
If the target is stationary, the frequency to the reflected signal is identical
with that of the transmitted signal. If the object is moving toward or away
from the antenna, the frequency of the reflected signal is increased or
decreased, respectively. The amount of the frequency shift, which is
proportional to the radial speed (V) of the moving target, is known as the
doppler frequency. This mobile doppler radar has an output power of 125
watts.

The Model 10A Velocimeter uses an audio beat frequency to
determine fest vehicle velocity. Its average useful range is about 50 to 100
thousand feet. The audio output is recorded on magnetic tape along with the
timing and control signals. Each cycle of the audio frequency represents
0.1864 feet/second; readings are to the nearest one~fourth cycle in the data
reduction process. The radar operates at about 2640 mc and requires two
operators: - one for azimuth and one for elevation control. After visual sight-
ing is no longer possible, the operators use tracking radar data in a "bug-
matching” process to follow the desired target.
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TABLE 5-8 Radar Set AN/FPQ-6, Techni cal Characteristics

Transmitting System

Frequency range
Frequency stability
Peak power
Average power
Output power tube
Power programming
Pulse widths

Prf

Coding capability
Frequency resolution

Receiver System

Tuning range
|-f frequency
Image rejection
Sensitivity
Noise figure
Bandwidth

Dynamic range

Antenna System

Type

Focal length

Beam crossover

Gain

Beam width

Drive

Antenna temperature

Side lobe height

Null depth

Capture area

Elevation coverage
Gear ratio
Backlash
Linearity

5400 to 5900 mc

1in 108/hr

2.5 to 3 megw

4,8 kw

Klystron

-30 db

0.25, 0.5, 1, and 2.5 psec

160, 640, 341, 1280, 1707, 142, 233,
285, and 366 cps

Yes

243 ke in steps

5370 to 5930 mc
30 mc

40 db

-110 dbm

8 db

1.2 1.6
w <8 <aw
=110 db with programming

29-ft Cassegrainian parabola
8 ft

0db

51 db

0.4°

Hydraulic motors (two - 37.5 hp)
26°K, dark sky

20 db down

35 db (minimum)

14,88 square meters

-2° to 182°

720:1

0.005 mil

0.09 mil (rms)
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TABLE 5-8 Radar Set AN/FPQ-6, Technical Characteristics (Continued)

Antenna System (Continued)
Azimuth coverage
Gear ratio

Backlash
Slip rings

Angle noise
Feed system:
Type of feed
Type of scan
Polarization
R-f transmission line
Line loss receiving
Line loss transmitting

Ranging System

Maximum range

Maximum tracking rate
Maximum slew rate
Velocity memory
Velocity lag

Bandwidth (maximum)
Acceleration

Master oscillator frequency
Oscillator stability
Acquisition data accuracy
Range accuracy

Tracking gates

Data bits

Serial readout rate
Granularity

Digital "1

Digital "0"

Pulse duration

Rise time

System Facts
Tracking rates

360° continuous

650:1

0.005 mil

Video: 16 to 60 cps to 50 mc
If: 6to 25 mc to 50 mc

0.03 mil (rms) servo

5-homn

Monopulse

Vertical or circular
Rectangular waveguide
2.3db

3.5db

32, 000 nautical miles (nonambiguous)
20, 000 yards/second

240, 000 yaords/second

99%/5 seconds

0.555 cps/nmi/second

19 cps

100, 000 yords/second2 (10,000 g's)
5 mc

1in 107

45 nautical miles

15 yards

0.25, 0.5, 1, and 2.4 psec

25 binary

50 kc/second

2 yards

8 2 volts

0 volt

1 +0.15 psec

0.3 psec

Azimuth: 28°/second
Elevation: 28°/second
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TABLE 5-8 Radar Set AN/FPQ-6, Technical Characteristics (Continued)

Ranging System (Continued)
System Facts (Continued)
Slewing rates

Accelerations

Accuracy

Range on 1 square meter,
corner reflector, 1 meter
side length

Scan modes

System Data
Analog outputs
Digital outputs:

Bits

Granularity

System Power
Load

Range: 20, 000 yards/second
Azimuth: 28°/second
Elevation: 28°/second
Range: 240, 000 yards/second
Azimuth: 20°/second
Elevation: 20°/second?
Range: 10,000 g's
Azimuth: +0,.05 mil
Elevation: 0,05 mil

Range: %5 yards

800 nautical miles

Circle, spiral, raster, rectangular

Same as AN/FPS-16

Azimuth: 20
Elevation: 20
Range: 25

Azimuth: 0.0122 mil
Elevation: 0.0122 mil
Range: 2 yards

208 volts, industrial, 239.1 kva
208 volts, critical, 107.6 kva
480 volts, industrial, 98.8 kva
480 volts, critical, 50 kva
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Figure 5.2-2 is a block diagram of the Model 10A
Velocimeter. Table 5-9 lists the technical characteristics of the radar.

5.2.3 Radar Application to Rocketsonde Systems.

Several types of radars are used extensively for tracking meteorological
rocket systems. They are the mobile systems M~33 (X~band), AN/MPA-12
(X-band), and AN/MPQ-18 (S-band), and the stationary system AN/FP5~16
(C-band). The major characteristics of these radar systems are given in
Table 5-10. Currently the FPS-16 radar system is the one most suitable for
fracking meteorological rockets, in that it can skin-track the rocket during
its flight and then immediately track the payload at the time of its expulsion
from the rocket.

Most of the high~performance range radars are fixed emplacements
and are too expensive ($1-3 million) to establish at remote meteorological
rocket sites. To make available a low-cost mobile fracking radar for remote
sites, the Army personnel at WSMR have developed modifications to surplus
M-33 mobile gun-laying radars for tracking meteorological rocket payloads.
As the slew rate and sensitivity of this radar do not permit skin tracking of
the rocket during ascent, thses radars have been slaved to the GMD telemetry
tracking systems to aid in acquisition. Other modifications to make the M~33
more suited to meteorological rocket work include the extension of the
effective plotting board range to 100,000 yards, and the installation of a
10-~foot parabolic reflector antenna to increase radar sensitivity over that
available with the original lens system.

A usable passive wind sensor or rockefsonde deflector must provide
adequate radar signal return to be tracked with the available radar to a
slant range of at least 100,000 yards. Consequently, the parachutes are
coated with a metallic substance for radar reflectivity. As a measure of the
radar efficiency of the sensors, AGC voltages are recorded against slant
ranges. The voltages are calibrated to decibels above the minimum discern-
able signal (MDS). The results from the FPS=16 iracks of Arcas 15~foot
parachutes is presented in Figure 5.2-3. The efficiency of the 8-foot Loki
parachute is illustrated in Figure 5.2~4. The radars used with the Loki para-
chute were MPQ-12 and MPQ~18 units from White Sands Missile Range.

For comparative purposes, the results of an S-band corner reflector track are
included. The corner reflector track was a standard ML 307/ ap aluminum
foil reflector carried aloft by a 1200 gram balloon. It is apparent that both
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TABLE 5-9 Model 10A Velocimeter, Technical Characteristics

Frequency

Range

Antenna beamwidth
Flat response

Power output

Noise figure

|-f bandwidth
Doppler output

2640 mc

50, 000 to 100, 000 feet

4.5° between half-power points

Up to 11, 000 feet/second (8000 mph)

200 watts peak, 125 nominal

12db

200 ke

3 watts into 500-ohm load

Lowest frequency, 1000 cps; velocity
= 186 feet/second

Highest frequency, 60, 000 cps;
velocity = 11, 160 feet/second
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SLANT RANGE (FEET X 1000)
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DB ABOVE MDS

FIGURE 5.2-3 The mean of 6 Cases from the FPS-16 Tracks of Arcas
15-foot Parachutes at Pacific Missile Range, California
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SLANT RANGE {thousands of yards)
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The efficiency of the 8-foot
Loki Parachute is illustrated

5' Thute

here.
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DB above MDS

FIGURE 5,2-4 S-BAND RADAR TRACE OF 8 FOOT PARACHUTE
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parachutes can be tracked to 100, 000 yards slant range and are adequate
reflectors for the available radar. Using the above recordings and the
radar range equation it appears that the 15-foot and 8-foot parachutes
provide effective targets of 45 meters © and 9 meters 2, respectively.

Signal sirength recordings made during chaff tracks at WSMR are
presented in Figures 5.2-5 and 5.2-6. Signal return is undoubtedly a
function of dispersion due to the additional parameters, time and wind
structure, as well as slant range. To approximate the effects of time and
wind structure, the variation with slanf range was removed. This was
accomplished by treating the target as a solid sphere. Although it would
be supposed that the signal level would always decrease with time, plots
of signal strength vs time contain instances of the reverse (Figure 5.2-7).
This is atfributed to a probable shift of the radar to a different "patch"
of chaff in the target areq, that is, one with a stronger return. Another
possible explanation is a redistribution of chaff so that a greater signal
return was evidenced for a time. However, both of these mechanisms which
serve to enhance signal return should provide only temporary stimulus.
Generally, the signal should and does deteriorate with time (range being
constant). |t has been the experience at WSMR that most chaff tracks
were terminated within 30 minutes after deployment due to signal deteriora-
tion resulting from chaff dispersion.

There has been some question regarding the effect of chaff wave
length and radar polarization on signal return. No presentable recordings
were made during these tests but there is definite evidence from observed
signal return at the radar that it is not necessary to match chaff dipole and
radar wave length exactly. X-band chaff can be tracked with S-band radar
with only an approximate 10-percent loss in signal return compared with
S~band chaff signal return. Similar results were obtained when X and C~band
radar were used with S-band chaff. Polarization appears interchangeable
since similar signal levels were observed on a single parcel of chaff whether
circular, horizontal, or vertical polarization was applied. [t might be
inferred then, that as the chaff falls, it is randomly oriented with respect
to the radar.
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SLANT RANGE (thousands of yards)

120 T T T T T

110 + .
Signal Strength Recordings made
during Chaff Tracks at WSMR,
100 + .
9 T -
80 T i
70 + N

60 + S-Band
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FIGURE 5.2-5 $S-BAND RADAR TRACK OF S-BAND CHAFF
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SLANT RANGE (THOUSANDS OF YARDS)

70
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10 |

X~Band Radar Track of X-Band Chaff

6" Sphere

DB ABOVE MDS

FIGURE 5.2-6 X-BAND RADAR TRACK OF X-BAND CHAFF
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FIGURE 5.2-7 SIGNAL STRENGTH VS. TIME AFTER EXPULSION OF CHAFF
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5.3  Telemetry.
5.3.1 General.

The four basic kinds of telemetry which have been used with meteoro-
logical rocket systems have been the 216 mHz to 235 mHz standard IRIG
telemetry, the 1680 mHz AN/GMD~(x), the 403 mHz AN/SMQ - (x) and
the specialized 38 mHz DOVAP tracking telemefry. Considering present
equipment, the advantages of the IRIG telemetry over th GMD and SMQ
types is a better modulation frequency response, multichannel potential,
and an inherently stable crystal-controlled transmitter frequency. The dis-
advantages, however, far outweigh the above advantages. Current [RIG
telemetry payloads are too costly ($1,000 for a one channel sonde) for
routine use. Although the components could be miniaturized, current
components are too large for the small dart diameters. The antenna lengths
for the 200 mHz range of transmitter frequencies are too long for small
rocket systems, and the systems are not set up for tracking the vehicle, i.e.,
radar is required. Perhaps the greatest disadvantage is that the IRIG systems
do not operate at the assigned meteorological frequencies of 403 mHz and
1680 mHz. The DOVAP system offers the advantage of obtaining tracking
data, but has all of the other disadvantages discussed above.

The SMQ system offers the advantages of a small lighter weight
instrument for the rocketsonde application because the modulation duty cycle
is more efficient than for the GMD types. Also, an omnidirectional ground-
based receiver is used so that a vehicle track does not have to be maintained.
The SMQ receiver is smaller, less complex and lower in cost ($3500) than
the GMD receiving system. It also requires less maintenance. However,
radar is required with the SMQ system to obtain tracking data.

The GMD system is currently the most appealing among the various
telemetry systems because the instruments can be made small enough for even
the small darts, and tracking data can be obtained with the AN/GMD- (2~4)
systems. Since the GMD operates at the meteorological frequency bands,
meteorological rocket operations can be conducted as a complete weather
station function. Since radar is not required with the GMD - (2-4) systems,
remote sites can be established with minimum cost and complexity. The cost of
the ground equipment is not prohibitive (35,000 for GMD-1, $65,000 for
GMD=2), and the complete payload instruments should be from $200 to $400.
A GMD=-2 system has been used to successfully track a pitot probe experiment
(Denpro) during vehicle ascent, and the fracking data compared favorably with
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the FPS-16 radar results. For probe applications the modulation pulse rate
will probably have to be increased as it was for the above pitot probe
(from 200 pps to 1000 pps) for better data accuracy and frequency response
or FM modulation can be used.

5.3.2 IRIG Telemetry Systems.

IRIG telemetry systems currently operate at carrier frequencies between
216 mHz and 235 mHz with the newer systems to operate in the 2200 mHz to
2300 mHz band. In the FM=FM or FM~PM system, various methods are used to
enable the r-f carrier to carry more than one signal. Eighteen different
channel frequencies can be applied to modulate the r~f carrier; they may be
applied either one at a time or, under the proper circumstances, all at once.
These 18 frequencies are subordinate carrier frequencies, called subcarrier
frequencies. Subcarrier frequencies are in turn frequency-modulated by a
source of information. The width of Channel 1 as set by the standards is
30 cycles above or below the center frequency of 400 cycles. The value of
30 cycles is determined by the standards, which call for a deviation of ¥ 7.5%
of the center frequency.

To keep the lowest signal~to-noise ratio, a modulation index (deviation
ratio) of five was chosen. This is shown in Channel 1 by dividing the 30-
cycle deviation by 5 and finding 6, which represents the frequency, in cycles
per second, at which applied information can modulate Subcarrier Channel 1.
A modulation index lower than five may be used at the expense of the signal-
to-noise ratio. A modulation index of unity (1) would permit all 30 cycles
of information to be passed. However, the signal-to-noise ratio would be
low, severely handicapping the resultant output signal. In addition to possible
distortion, another difficulty with a modulation index of unity, where the full
deviation would be used, is the probability of the information of each channel
overlapping, producing "cross talk". Figure 5.3-1 shows how the bandwidths
increase with increasing channel frequency. For full details of the complete
channel frequencies, deviation limits, and standard information-carrying
capabilities of all channels, see Table 5-11. As the frequency of each succeed-
ing channel increases, the frequency by which the channel may be modulated
increases, The modulating frequency of Channel 1 is six cycles, that of
Channel 18 is 1050 cycles. Thus Channel 18 may be used to convey information
changing at @ maximum rate of 1050 cycles. Slow variations in information
are applied to the lower~frequency channels. To allow the subcarrier channel
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FIGURE 5.3-1 IRIG FM/FM Telemeter Subcarrier Bands

- 141 -



Band

o N =

5*

7*
8*
9*
10 *
1 *
12 *
13 %
14
15
16
17
18
19

21

A*
C*

E*

TABLE 5-11

IRIG FM/FM TELEMETER SUBCARRIER BANDS

~7.5%

370
518
675
888

1,202
1,572
2,127
2,775
3,607
4,995
6,799
9,712
13,412
20,350
27,750
37,000
48, 562
64,750
86,025
114,700
156,625

~-15%

18,700
25, 500
34,000
44,620
59, 500
79,050

105, 400

140, 250

USE OF OPTIONAL BANDS

Band A may be employed by omitting Band 13, 15 and B.

Center Freq. +7.5%
400 430
560 602
730 785
960 1,032

1,300 1,398
1,700 1,828
2,300 2,473
3,000 3,225
3,900 4,193
5,400 5,805
7,350 7,901
10, 500 11,288
14,500 15,588
22,000 23,650
30,000 32,250
40,000 43,000
52, 500 56,438
70,000 75,250
93,000 99,975

124,000 133,300

165,000 177,375

Center Freq. +15%

22,000 25,300
30,000 34,500
40,000 46,000
52,500 60,380
70,000 80, 500
93,000 106,950
124,000 142, 600
165,000 189,750

Intelligence, cps

MI=1

30
40
55
70
100
125
175
255
300
400
550
800
1,100
1,650
2, 250
3,000
3,950
5,250
6,975
9,300
12,375

3,300
4,500
6,000
8,000
10, 500
13,950
18, 600
24,750

Band B may be employed by omitting Band 14, 15, A and C.
Band C may be employed by omitting Band 15, 17, B and D.
Band D may be employed by omitting Band 16, 18, C and E.
Band E may be employed by omitting Band 17, 19, D and F.
Band F may be employed by omitting Band 18, 20, E and G.

Band G may be employed by omitting Band 19, 21 F and H.

Band H may be employed by omitting Band 20 end G.
NOTE: Bands 20, 21, G and H are to be used on 1435-1535 & 2200-2300

megacycle systems only.
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6
8

1
14
20
25
35
45
60
80
110
160
220
330
450
600
790
1,050
1,395
1,960
2,475

660

900
1,200
1,600
2,100
2,790
3,720
4,950




to carry higher information frequencies, the deviation limits of a subcarrier
channel may be increased. Doubling the deviation doubles the frequency
of information that can be handled by a channel#” As a result, the last
five channels, 14 through 18, may be used with an increased value of 15%
deviation limits. For identification, these channels are labeled A through
E.

The synchronizing information is detected on the ground and assures
that the information is recovered in the proper sequence. This means that the
pulse representing information channel No. 1 always follows the synchroniz-
ing pulse and the pulse preceding the synchronizing information is the last
information channel.

The subcarrier oscillator is a low-frequency oscillator that conveys
the information gathered by the transducer. The frequencies vary from an
audio frequency of 400 cycles to as high as 70,000 cycles. The subcarrier
frequency is then applied to modulate a high~frequency R—F transmitter.
The IRIG subcarrier frequencies can carry varying degrees of intelligence,
depending upon the frequency of the channel selected. The higher the
channel frequency the higher the frequency of the information it can carry.
The information reproduced by the transducer at the point being measured
may vary from zero to a maximum of 2100 cycles. This varying information
is used to modulate the subcarrier oscillator. The type of modulation used
may be Amplitude Modulation (AM), Phase Modulation (PM), or Frequency
Modulation (FM). Frequency modulation of the subcarrier oscillator is
most frequently used at present.

A subcarrier oscillator requires that the modulations vary the frequency
linearly. 1t must have high stability, low drift, and low distortion. Since
space and weight are important considerations, simple basic circuits are often
used. To aid in achieving these goals, high—grade, close-tolerance com-
ponents are used throughout the equipment. Various methods may be used to
check frequency drift. The simplest is to remove, for an instant, the input
to the subcarrier oscillator. It then oscillates at a known specific frequency.
Another method is to apply a calibrating voltage to the subcarrier oscillator to
produce a known specific frequency. There are three types of oscillator
circuits in general use as subcarrier oscillators:

- 143 -



1. Inductance-capacitance
2. Resistance~-capacitance phase - shift
3. Multivibrator

The inductance of an L-C tank circuit is often the coil winding of
an inductive-type transducer. An R-C phase-shift oscillator may use the
varying resistance-type transducer part of the phase-shifting network.
Multivibrator oscillators are generally free-running, with their frequency
varied by variations in their bias caused by the output of a resistive~-type
transducer. l

The output frequency of a voltage-controlled subcarrier oscillator
may be varied so that an increase in the applied signal either causes an
‘ncrease or a decrease in the output frequency. The value of input voltage
required to achieve £ 7.5% frequency swing, or Lt 15% frequency swing,
varies with each manufacturer. An average value is from 3 to 5 volts. The
input voltage may be unipolar, such as zero to + 5 volts, or zero to =5 volts.
Or it may be bipolar, such as zero to I 2.5 volts.

In summary, the subcarrier oscillator is a self-contained oscillator
that has as its center frequency any one of the 18 IRIG standard values.
The subcarrier oscillator is modulated by the varying output of a transducer,
most often by FM.

The output of the subcarrier oscillators is used to modulate the r-f
transmitter. The form of modulation used for the r—f transmitter is usual ly
frequency modulation or phase modulation. Crystal-controlled phase
modulation is more prominent. The r-f carrier frequency used is in the 216
to 235 megacycle band assigned for telemetry use.

The PDM-FM or PDM=PM system enables the r=f signal carrier to
carry more than one information channel. This is accomplished by dividing
the time the carrier is on the air into known amounts, each amount represent-
ing a different channel of information. The information is converted to a
value of time, then the r~f carrier is turned on to transmit a pulse of energy
for the length of time representing the value of the information. As shown in
Figure 5.3-2, a pulse duration of 90 microseconds ( ~ sec) represents a
minimum=information reading; a pulse duration of 700 ( x sec) represents a
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maximum=information reading. For example, 90u sec might represent a
minimum=-information level of the output of an instrument. The 700 u sec
might represent a maximum~information level.

These pulses of information are sent in specific numbers, 900 per
second. This could represent 43 information channels sampled 20 times per
second. Two additional channels are transmitted with no information to
identify the beginning and end of each group of information.

One problem in having the output of two or more subcarrier oscillators
simultaneously modulating the r~f transmitter is cross modulation, or cross
talk. This results essentially from harmonics of some of the lower-frequency
subcarrier oscillators missing with the primary frequencies of the high fre-
quency subcarrier oscillators. Harmonics are generated in nonlinear circuits,
or circuits in which overloading causes operation in a nonlinear region. To
prevent formation of harmonic frequencies, linear mixing networks are used
at the output of the subcarrier oscillators. These are sometimes called harmonic
suppression filters.

To keep an equal signal-to-noise ratio output for all subcarrier oscillators,
the high~frequency subcarrier oscillators must deviate the transmitter more than
the lower-frequency subcarrier oscillators. The transmitter frequency deviation
of the lower-frequency subcarrier oscillators is kept to a minimum to reduce
the effects of cross talk and other porblems.

The operating range of the transmitter is to a large degree determined
by three factors.

I. Transmitter power
2. Receiving and transmitting antenna gain
3. Receiver sensitivity

The power output of a transmitter averages 3 watts, giving an approx-
imate range of 50 miles under line-of-sight conditions. To obtain higher
power, the fransmitter is used to drive a high-power r~f amplifier. R-f
amplifiers average 40 to 50 watts of output, increasing the range of transmission.
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The problems encountered in constructing r-f transmitters are the same as
those found in constructing all previously discussed telemetering equip~
ment; compactness, ruggedness and dependability. R-~f transmitters pose
the additional problem of heat generated in the transmitters. Forced—

air cooling has been used from some circuits, other immerse the entire

unit in oil for better heat dissipation. Shock is an especially serious threat
of the r-f transmitter because a slight movement of some of the tuned-
circuit elements causes undesired modulation of the output, producing an
erroneous signal. Frequency drift is held to a minimum by the use of
high-quality components and other techniques, especially crystal control.

The transmit r~f power requires an antenna, which must be efficient
to make the most of the small power output of the transmitter. An efficient
antenna is not difficult fo produce under ordinary circumstances. However,
on a missile moving at supersonic speed, it is quite a problem. Since the
missile may be spinning about its longitudinal axis, the antenna must radiate
in all directions. This may also be accomplished by having more than one
antenna. In addition, the sudden acceleration and high temperatures
involved require that the antenna be of sturdy construction and correct
materials, To keep the missile as streamlined as possible, the antenna cannot
be a bulky unit that would alter the missile's shape.

These problems often result in a compromise in the type of antenna
used. The most popular types are:

1. The airframe is the radiator.
2. Carefully located stubs or wires are used as the radiator.
3. A projecting portion of the vehicle, such as a fin, is

electrically isolated by a notch and used as a radiator.

4, Slot antennas, mounted flush with the skin of the
vehicle, are used as a radiator.

3. A resonant cavity is used to isolate a portion of the
vehicles for excitation as a radiator.
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Use of the entire airframe as the radiator is shown in Figure 5.3-3A.
A spike placed in the nose cone of the vehicle is a simple form of stub
antenna, Figure 5.3-3B. The length of the spike and its use are largely
determined by the length of the vehicle. A notch cut through a projecting
part of the vehicle, such as a fin, produces a surface suitable for radiation
(Figure 5.3-3C). (When necessary, the notch is filled with a solid dielectric
material). A slot antenna (Figure 5.3-3D) may be mounted flush with the
skin of the vehicle. The radiation pattern of this type of antenna is quite
similar to that of a dipole and reflector. A fifth method, shown in Figure
5.3-3E, utilizes a resonant cavity to isolate the outer skin surface of the
forward section from the rest of the rocket. The outer skin surface of the
isolated portion is utilized as a radiator.

Typical PDM/FM Telemetry:

PDM (Pulse Duration Modulation) telemetry systems are used when
a strictly time division multiplex system is capable of meeting the bulk of
telemetering requirements. Compared to the subcarrier channels system,
the PDM/FM facilities permit the use of a relatively large number of
channels, but only at lower frequencies. Figure 5.3-4 is a block diagram
of the PDM/FM system.

Typical FM/FM Telemetry:

The FM/FM telemetry system is a frequency division, multiplex
type device. Subcarriers of different frequencies modulate an r-f carrier
and the subcarriers are frequency modulated by the intelligence. The
channel capabilities of the system can be increased by using the commutation
method to modulate the carrier frequency with combinations of the sub-
carrier frequencies. Subcarrier frequencies for FM/FM telemetry are selected
from a chart compiled by the Inter-Range Instrumentation Group (IRIG).
Figure 5.3-5 is a block diagram of the FM/FM telemetry system.

Typical FM/AM Telemetry:

The FM/AM telemetry system is a frequency~-modulated-subcarrier,
amplitude~modulated-carrier type facility. Sixteen converters, each of a
specified frequency, receive and convert data for the individual channels
of the tape recorder. Channels 1 through 14 are converted to 5 ke; channels
15 and 16 are converted to 10 kc. The converted channels are then recorded
on separate tracks of tape recorder. Figure 5,3-6 is a block diagram that is
representative of FM/AM systems.
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Typical X-Band Telemetry:

Figure 5.3-7 illustrates the X-band telemetry receiving system in
simplified block diagram form. Table 5-12 list the characteristics of this
system.

5.3.3 DOVAP Telemetry Tracking System.

The DOVAP system functions as a combined telemetry and tracking
system. A 38.031-mc fransmitter located at the launch site 2mits a CW
signal that is received by the rocket, and by each of four widely spread
DOVAP stations. A DOVAP transponder in the rocket doubles the frequency
of the received signal and retransmits to the DOVAP stations. At each
DOVAP station the 38.031~mc signal from the launch site transmitter is
received, doubled in frequency, and mixed with the signal from the rocket.
The frequency difference between the two signals results in an audio fre-
quency doppler signal whose frequency is proportional fo the fime rate
of change of the transmitter-rocket-receiver path-length. Tape recordings
of the doppler signal, along with precision timing are made at each DOVAP
station. At the DOVAP Master Station, simultaneous recordings of the
doppler signals from each DOVAP station are made, along with recordings
of DOVAP telemetry. Accurate frajectories can be obtained from the
doppler data.

The telemetry receiving stations consist of amplitude modulated
receivers, discriminators, multichannel magnetic oscillographs, and
magnetic tape recorders. Circularly polarized helical antennas, fixed in
both elevation and azimuth are used with the receivers.

The rocket-borne DOVAP telemetry subcarrier oscillator consists of
a single channel frequency modulated positive grid balanced multivibrator
having a center frequency of 30 ke/s, and a frequency deviation of plus or
minus 40% of center frequency for an input signal level of from zero to plus
five volts. Negative voltage excursions of the subcarrier oscillator key the
transponder radio frequency carrier off for one half the period of the sub-
carrier frequency. The telemeter is an integral component of the DOVAP
transponder.

A representative DOVAP telemetry record is shown in Figure 5.3-8.
Typical shroud-type DOVAP antenna radiation patterns, are shown in Figures
5.3-9 and 5.3-10. The nearly omni-directional pattern in the plane of the
loop is an important feature of these antennas.

- 153 -



FIGURE 5.3-7 X-Band Telemetry Receiving System, Block Diagram
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TABLE 5-12\X—Band Telemetry System Characteristics

Receiver

Frequency range
Sensitivity
Noise figure

|-f bandwidth
Modulation

Recording System

Tape recorder
Recorder channels

Display

Detected video
PDM raster
Single PDM channel

Antenna

Type

Radiating element
Beamwidth

Gain

Polarization

Azimuth scan
Elevation scan
Maximum tracking rate

8500 to 9600 mc
=95 dbm
Approximately 9 db
10 me

PDM/AM

100-kc response

PPM, PDM, azimuth angle error,
elevation angle error, AGC voltage,
timing and voice

Oscilloscope
Oscilloscope
Pulse-duration (interval counter)

Metal plate lens

Monopulse type, four feedhorns
Approximately 1.2° (6-db points)

40 db

Horizontal, vertical linear, or circular
360° continuous

-10° to +180°

40° per second (azimuth and elevation)

- 155 -




NOILvHEITVD SLTI0A S

]

JaNAVAIIWI L
HOLVILONNODGNS

]

ASV3
BV

J
HLSON
OV

Q¥VMHOS
OvW

Eamd

$xove
]

{ AHIMOd
“am4

_1

lsv3
OV

J

HLY¥ON
OV

‘aM4
OV

NOILYHBITVI SL0A S

- 156 -

0.01 SECOND PIPS

FIGURE 5.3-8 Representative Dovap Telemetry Record









5.3.4 AN/GMD - (x) Telemeiry and Tracking Systems.

5.3.4.1 General.

The AN/GMD = (x) ground-station equipment has been
developed and standardized for radiosonde data acquisition. The AN/GMD-1,
which is common at many of the military weather stations, not only receives
the meteorological data but tracks the airborne transmitter in azimuth and
elevation angles. For radiosonde measurements altitude is determined from
the pressure measurement with this equipment. This technique is not
accurate enough at rocketsonde altitudes and radar must be used. The
AN/GMD-2 performs the same functions as the GMD~1 with the addition
of the capability of measuring slant range. The feature is quite important
for the rocket use since it eliminates the need for radar tracking. The azimuth
and elevation slewing rates of these equipments are not fast enough to uptrack
the rocket systems from lift off with most of the existing missile range site
geometries. However, intercept methods of acquisition soon after lift off
have been routinely employed with a large degree of success. The AN/GMD~4
has been developed to upgrade the GMD-2 system by employing coarse rang-
ing to eliminate the slant range ambiguity problem and to provide automatic
data processing of the received meteorological data. The GMD systems
appear to be adequate for meteorological rocket work. If a faster data trans-
mission response is required for advanced probe applications, the modulation
rates can be increased or FM may be employed. Both of these techniques
have been used. The tracking accuracies appear to be adequate for most
meteorological rocket applications as a rather good agreement has been
obtained with AN/FPS-16 radar tracking data.

The design philosophy of the GMD equipment has been to
minimize the cost of the airborne instrumentation. Since approximately 400,
000 radiosondes are flown each year, it has been quite important fo keep as
much of the required complexity and cost of the telemetry systems as possible
in the ground station equipment. Therefore, the airborne instruments or
sondes are fairly simple to design and mininal cost. This advantage has to
some degree been passed on to the current rocketsonde instruments for they
basically are copies of the equivalent radiosondes as far as the electronic
circuitry is concerned.
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For the next few years at least the GMD system appears
to offer the greatest advantages in routine meteorological rocket applications
because the ground equipment is standard weather stafion equipment,
telemetry is accomplished at the assigned meteorological frequencies, the
payload instrumentation is simple and low in cost and tracking data can be
obtained so that the requirement for radar tracking can be eliminated.

5.3.4.2  Ground-Station Equipment.

The GMD ground-station equipment consists of either the
AN/GMD-1, the AN/GMD-2 or the AN/GMD~4 as described in the
following sections.

5.3.4.2.1 Rawin Set AN/GMD-1.

The Rawin Set AN/GMD-1, together with its
associated equipment, has been the standard ground equipment for tracking
of balloon-borne atmospheric probes since 1949, This transportable radio
direction finder was designed to track automatically a balloon-borne radio-
sonde transmitter (frequency range 1660-1700 mc). Its major units include
a parabolic antenna with a pylon scanner assembly, a pedestal which supplies
support and rotation machinery for the antenna in elevation and azimuth, an
antenna control which energizes and controls the tracking machinery, and
a receiver which detects and amplifies both the data signal and the tracking
error signal from the scanner.

No modifications of the basic AN/GMD-1 are
necessary to permit its use in tracking the Arcas-borne meteorological instru-
ments in current use. At several sites receiver sensitivity has been increased
15 decibels through the use of a tunnel diobe or parametric pre-amplifier to
permit tracking of the dart instruments. The elevation slew rate is sufficient
to follow the Arcas sounding rocket from launch to apogee when the tracking
site is located approximately one-half mile from the launching pad. The dart
instruments can likewise be tracked shortly after launch since their velocity in
the first 15,000 feet is too great for tracking from the launch site.

The Recorder AN/TMQ-5 is the standard data

recording device supplied with the AN/GMD~1 system and is used for the
recording of temperature information from the rocket-borne transmitter. The
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demodulator stage converts the data pulse frequency (0-200 pps) to a DC
level which is recorded on 10-inch chart paper usually at a rate of one
inch per minute with an accuracy of L .5cycles per second.

The GMD~-1 ground equipment consists of a
tracking dish antenna and receiver unit, a control recorder unit and a
TMQ=5 chart recorder as shown in Figures 5.3-11 and 5.3-12. Other
versions of the system contain various au.iliary equipment such as ranging
transmitter and various automatic data equipment.

The antenna and receiver unit consists of a
seven foot diameter dish, mounted on a pedestal which contains the
receiver and antenna motor controls. The dish may be operated in either
automatic or manual frack mode locally at the pedestal or from controls
on the recorder, which is usually remote from the pedestal. The antenna
system consists of a parabolic reflector, an eccentric cup which is rotated
by a drive motor and hollow drive shaft, a dipole antenna, and a frans-
mission line. The rocketsonde transmitter transmits a pulse-modulated
radio-frequency signal (1680 Mc). The antenna lobe (received signal
intensity pattern) rotates slowly. When the rocketsonde is in line with
the electrical axis of the antenna reflector, the signal intensity of the
dipole has a constant value; when the rocketsonde drifts to a point off
the elecirical axis of the antenna reflector, the intensity of the signal at
the dipole varies with the rotation of the eccentric cup. Some of the
radio-frequency energy from the transmitter is received by the parabolic
reflector and reflected to the dipole antenna. As a result, the amplitude
of the radio—frequency signal at the dipole takes the shape of a modulated
sinusoidal wave. The relative phase and amplitude of the sinusoidal mod-
ulation is indicative of the angular distance of the rocketsonde transmitter
from the axis of the antenna.

In the receiving system, the modulated wave
is beat against the output of the local oscillator to produce a 30 Mc inter-
mediate frequency which retains the pulse modulation and amplitude varia-
tions. The intermediate-frequency signal is then amplified and detected
and the demodulated signal (30 cycles/sec sine wave and pulses) is passed
to the antenna positioning system and to the meteorological data transmission
system. The receiving system also contains an automatic frequency control
(AFC) circuit to maintain a constant 30 Mc intermediate frequency and a
service meter for checking various currents and voltages present in the Rawin
set,
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The antenna positioning system receives the
detected sinusoidal signal from the receiving system. | rejects the pulse
modulation and then amplifies and compares the sinusoidal content with
two reference volfages from the reference volfage generators. These
reference voltages correspond to the elevation and azimuth components of
the position of the antenna axis. This results in two dc voltages, one for
elevation and one for azimuth. The magnitude and polarities of these
voltages are indicative of the magnitude and direction of the angular diff-
erence of the radiosonde with respect to the elecirical axis of the antenna.
The azimuth error voltage is applied to the azimuth drive to position the
antenna reflector in azimuth. The elevation error voltage is applied to the
elevation drive to position the antenna reflector in elevation. Since the
position of the rocketsonde is constantly changing, the azimuth and eleva-
tion drives are constantly positioning the antenna reflector to track the
rocketsonde. Error voltages can also be introduced so as to track the rocket-
sonde manually.

The elevation and azimuth angles of the antenna
are indicated and recorded by the Rawin set and are recorded at successive
instants of time.

The receiver covers a band from 1655 mc to
1705 mc and will operate in either AM or FM mode. AM mode is utilized by
the current dart system. The modulation type, when viewed from the carrier,
is PDM-AM in that the intelligence is impressed upon the carrier in the
form of negative pulses of sufficient magnitude to exceed 100% AM and hence
terminate the carrier for the duration of each pulse. The repetition of the
carrier terminating pulses contains the data. This technique results in pulses
of carrier frequency energy of varying duration as a function of the data
transmitted. The incoming signal is mixed with the local oscillation frequency
in a wave guide, and a 30 mc IF is detected in the receiver which reconstructs
the chain of pulses originally impressed upon the carrier. These pulses are
then differentiated, and the resulting positive pulse from the trailing edge
is used to trigger a multivibrator which results in a train of pulses of very
constant amplitude and duration. These pulses are fed into a self-balancing
servosystem which positions a pen on a strip chart recorder. The recorder pin
is displaced as a function of pulse repetition frequency and can accommodate
rates up to 200 pps. Various auxiliary amplifier systems have been used to
enhance the incoming signal and, of these, the parametric amplifier seems to
be the most satisfactory.
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The meteorological data iransmission system
receives the detected signal from the receiving system. It then rejects the
sinusoidal modulation for antenna positioning, shapes and amplifies the
meteorological pulses and passes them to the meteorological recorder. The
meteorological recorder (which is not an integral part of the Rawin sef) con-
verts the pulses, whose rate is determined by the sensor resistance, into a
graphical representation of sensor resistance as a function of time. More
detailed information concerning this receiving system can be found in the
technical manual concerning the receiver (Rawin Set AN/GMD/1A).

The meteorological recorder AN/TMQ-5 is
used in conjunction with the AN/GMD-1 and AN/GMD-2 receivers. A
block diagram of the recorder is shown in Figure 5.3-13. The variable-
rate pulses from the receiver are fed to the frequency converter of the
recorder which converts them to a dc voltage. The value of the dc voltage
at any instant is proportional to the pulse frequency which created it. This
dc voltage excites a servo system that positions a pen whose displacement
from its zero position on a calibrated chart is again proportional to the pulse
frequency which in turn was determined by the value of the temperature
sensor resistance in the rocketsonde.

Detailed information concerning the meteorological
recorder can be found in the technical manual (Radiosonde Recorder AN/TMQ-5)
concerning the recorder. Specifications for the AN/GMD-1"are presented
in Table 5-13.

5.3.4.2.2 Rawin Set AN/GMD-2.

The GMD-2 is essentially the same as the GMD-1
with the addition of a slant range determination system. [n fact a number of
GMD-1 sets have been converted to GMD-2 sets by adding a 403 mHz trans-
mitter and a ranging modulation discriminator. A block diagram of the
AN/GMD-2 is presented in Figure 5.3-14. The essential difference between
this and the GMD~-1 system is the addition of 403 mHz transmitted signal
containing an 81.94 kHz sine-wave modulation to the airborne instrument.

The airborne instrument contains a 403 mHz receiver which accepts the ground-
station transmitted ranging signal, detects the 81.94 kHz modulation and fre-
quency modulates the airborne 1680 mHz transmitter at the 81.94 kHz rate.

Thus the airborne instrument operates as a fransponder in addition to a data tele-
metry fransmitter. The meteorological data is AM pulse modulated as in the case
of the GMD-1 system.
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TABLE 5-13

AN/GMD -1 SPECIFICATIONS

R=F System

Scanning Conical

Antenna Dipole

Reflector Parabolic

Spinner motor Induction

Spinner generator 2 phase, self-excited; 15 volts, 30 cps

Receiving System

Type Superheterodyne
Normal frequency 1680 mc
Intermediate frequency 30 mc
Frequency conirol AFC or manual
Local oscillator Tube type
Local oscillator

frequency 1650 me
Input impedance 50 ohms
Data Error signal
Modulation FM or PM
Bandwidth 0.8 mc or 2.5 me

Antenna Positioning System

Tracking Automatic, local manual, remote manual

Drive motors 60 volts dc, 1.4 amperes, 1/20 hp at
500 rpm

Tachometer generators 2.1 volts dc at 100 rpm

Position Indicating and recording System

Synchro transmitters Type 1V, single phase, self-synchronous;
115 volts, 60 cps

Synchro receivers Type V, single phase, self-synchronous;
115 volts, 60 cps

Recording Tape (digital imprint)

Printer motor Synchronous type;* 115 volts, 60 cps
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When the ranging signal is received at the
ground-equipment, the 81.94 kHz modulation is detected and its phase is
compared with the transmitted signal to determine the time for a round frip,
i.e., from the ground station to the sonde and back to the ground station.
One complete phase shift of the ranging modulation is equivalent to 4,000
yards, therefore, a slant range of 2, 000 yards.

The GMD-2 system is currently in operation at
a limited number of locations with both balloon sondes and rocket sondes.
The main disadvantage with the system is that the range data can be ambiguous
if the signal is lost for an appreciable period of time. The ranging modulation
places the sonde range within a range of 2,000 yards but does not indicate
which 2,000 yard increment it is unless an accurate count of completed phase
shifts is made from a known point in space or launch. A coarse ranging pro-
vision can be added to the GMD-2 as a modification. This coarse ranging
modulation determines the slant range with an accuracy sufficient to determine
the 2,000 yard increment. The regular ranging modulation is then used to
determine the accurate slant range.

The wind error from GMD-2 data is a function
of the slant range and averaging period. Typical wind erros are presented in
Figure 5.3-15.

5.3.4.2.3 Rawin Set AN/GMD-4.

The GMD-4 is essentially the same as the GMD-2
with the addition of a coarse ranging facility and automatic data processing
for both the tracking data and the meteorological data. A simplified block
diagram is presented in Figure 5.3-16. When signal dropouts or temporary
loss of signal from the airborne instrument occur, the ranging modulation is
momentarily interrupted and then started again. The time of arrival of the
reinstated signal places the slant range data into the proper 2,000 yard
increment and the normal 81.94 kHz modulation is used for the required
accurate determination. Range rate data recording is also improved over the
original GMD-2.

5.3.4.2.4 NASA Radiosonde ADP System.

A number of schemes for automatic and semi~
automatic processing of radiosonde data have been devised with varying degrees
of success. An operational automatic data processing system was developed for
use with the AN/GMD=2 Rawin Set. This system was supplied by the Bendix
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Friez Instrument Division to NASA/MSFC and installed at the Huntsville
facility in September 1963. The system was designed with a number of
functional systems utilizing standard "off-the=shelf" meteorological
equipment. These items required only minor modifications, in some cases,
to provide system interface. The remaining units which were wholly des-
igned and fabricated at Bendix Friez include the tracking data Digitizer,
the Converter-Detector and the Control-Decommutator. The later two
units contain the logic and control circuits essential for automation of

the met data. A data processor commands a printing summary punch to
produce punch cards as desired.

The AN/AMQ -9 radiosonde unit is utilized
with the following telemetry modifications:

1. A special commutator designed to
include 1/2-second reference scgmerit preceding each temperature and
each humidity segment. These reference identifiers clearly indicate a
change from one sensor to the next, so that close or equal signal ratios
are not confused, and that noise or signal dropouts are not mistaken for
frequency changes.

2, Since the slant range is desired in
meters, the ranging modulation frequency of the sonde is changed from
81.94 kHz. Modifications of the Rawin set transmitter and comparator
are necessary to be compatible with the frequency change, and the data
processor is used to handle the printout, the visual indication and the
monitoring of slant range data obtained from the Rawin set.

The difficulty in recognizing the reference
frequency is the spread of 40 pulses per second allowed by the specification
and the fact that zero humidity can produce a pulse rate just 15 pulses per
second below the actual reference frequency. To attempt to recognize
reference as any frequency above 170 pulses per second would erroneously
detect a zero percent humidity frequency (175 pps) of a radiosonde having
a reference frequency of 190 pulses per second. To eliminate this difficulty,
the automatic data processor stores and updates the reference frequency
continuously during the flight. The reference frequency can then be automatically
detected as that frequency within 10 cycles per second of the stored reference.
This scheme will be workable for all normal shifts in the radiosonde blocking
oscillator.
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The measurement of the temperature and
humidity data is made in the voltage realm with 0.905 volts correspond-
ing to 190 cycles per second. The linear conversion to voltage is
accomplished in the Converter-Detector unit. Referring to the block
diagram in Figure 5.3-17, the output of the frequency to DC voltage
converter is connected to the signal loss detector, the "reference detector, "
and the A to D Converter. The A to D Converter is a digital voltmeter-
ratiometer with front panel decimal display. This unit measures the
reference frequency (voltage), the temperature ratio, and the humidity
ratio. The "signal loss detector” will actuate if the frequency falls below
10 cps (0.047 VDC) for more than one half second. The "reference
detector” will actuate if the incoming frequency is within 10 cps of the
stored reference frequency.

The tracking of the radiosonde commutator
is accomplished by a stepping switch. Each time the "reference detector"
is actuated, the stepping switch is advanced. The stepping switch "home"
position corresponds to the reference segment of the commutator with the
remaining five positions corresponding to the temperature and humidity
segments. The stepping switch therefore keeps the synchronism with the
radiosonde commutator. When the "reference detector" is actuated longer
than 1.5 second (as it is during the 3.9 second reference frequency trans-
mission) the stepping switch will "home™ unless it is already in the "home"
position. A word description of the sequence of events, starting with the
reference frequency, will show the signal flow through the simplified block
diagram. The reference detector actuates for 3.9 seconds and immediately
advances the stepping switch to "home" from the last femperature position.
After 1.5 seconds, the "home detector" generates a home command which will
reestablish synchronism if the stepping switch had fallen out of step. After
2.2 seconds total delay, a measure command is sent fo the A to D Converter.
The mode command of the A to D Converter is connected through the stepping
switch to the VOLTS mode. The DC input (reference frequency) is measured;
the decimal output is converted to binary coded decimal (BCD), and appears
at the BCD-to-Analog Converter input. Within 0.33 second after the A to D
Converter receives its measure command, it generates an end~of-measure
command which goes through the "signal loss detector, " the stepping switch,
the "reference quality: circuit, and the "reference detector". The command
then causes the BCD-to~Analog Converter to store the data appearing at its
input. The "reference quality" circuit will inhibit storage of the reference
frequency if it is more than 5 cps below the previously stored reference. This
guards against storing the reference frequency during even a slight signal

dropout.
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There is no reference identifier preceding
or following the reference data transmission. The stepping switch advances
to the first temperature position after 3.2 seconds total delay (by means of
a circuit not shown on the simplified block diagram). At 2.2 seconds later
than the advance of the stepping switch, a measure command is sent to the
A to D Converter to measure the incoming temperature frequency (voltage).
Now the A to D Converter mode command is switched fo "ratio" to measure
the DC input as a ratio of the reference voltage from the BCD to analog
converter. Within 0.33 seconds after the A to D Converter receives ifs
measure command it generates and end of measure command which goes through
the "signal loss detector”, and the stepping swiich to the Temperature and
Humidity Translator Storage. The command causes the output of the A to D
Converter to be stored in the temperature section of the Temperature and
Humidity Translator Storage.

The stepping switch is advanced to the next,
or humidity, position when the first reference identifier actuates the
nreference detector”. At 2.2 seconds after the stepping switch is advanced
a measure command is sent fo the A to D Converter. This time the store
command appears on the "store H" line of the Temperature and Humidity
Translator Storage unit. The stepping switch is advanced each time a ref-
erence identifier is received until the long reference frequency is received
when the entire sequence described above is repeated.

In case one reference identifier is not received
due to a signal dropout the Control-Decummutator contains an auxiliary advance
circuit which will advance the stepping switch. No measure command will be
generated since the “"reference detector” will not have actuated. Synchroniza-
tion of the stepping switch with the radiosonde commutator is maintained, and
the temperature or humidity information punched out on the IBM card is the
previously stored data.

The azimuth, elevation, and slant range data
from the pedestal are in the form of synchro-signals. By means of a selector
switch on the Control Decummutator front panel, the operator switches to the
desired pedestal and control recorder. Reed relays within the GMD Junction
box connect the Data Processor to the synchro-signals. In the Digitizer, the
synchro signals position digital encoders and frontal panel indicators by means
of servo-motor drives. The digital outputs are stored in their respective Trans-
lator Storage units on command from the Timer. Azimuth, elevation and slant
range data are stored simultaneously to be punched out on the card identified
with the proper elapsed time.
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The ADP system is designed to give the
operator the ability to observe the output in printed form on the IBM cards,
to observe the meteorological data on the A to D Converter, and to
observe the azimuth, elevation and slant range data. The printed card can
be compared with AN/TMQ=-5 record !~ ensure that the meteorological data
are being processed properly. In the event that the IBM 526 printing
summary punch would hang up due to a damaged card or some other reason,
the raw data will be available from three paper records. The azimuth
and elevation angles are printed (with time) by the C=577 Control
Recorder. The slant range and elapsed time are printed by the Auxiliary
Slant Range Printer, and the meteorological data are recorded by the
AN/TMQ-5 Meteorological Recorder.

5.3.4.3 Rocketsonde Instrumentation.

Although twenty=three rocketsonde instruments are listed
in the "Data Report, Meteorological Rocket Network Firings, World Data
Center A", (see Table 5-14), only five of these instruments are currently
used on an operational basis. Four of these five instruments are used with
GMD equipment and are described in the following section.

5.3.4.3.1  Stratospheric Temperature Sonde (STS-1)

The STS~1 instrument in Figure 5.3-18 has been
developed for the Arcas by Ballard, et. al., at WSMR as an improved version
of the Delta | for operation with the AN/GMD-1 ground-station. The
improvements have included the reduction of power in the measuring circuit,
the use of a thin-film Myla rhermistor mount and a better matching of the
sensor input resistance calibration of the sonde with the thermistor calibration
to achieve better accuracy over the full temperature range. A circuit diagram
of the STS-1 is presented in Figure 5.3-19. The temperature data measurement
circuit consists of a current amplifier transistor which feeds the amplified
thermistor current into a unijunction relaxation oscillator to form data or ref-
erence pulses at a rate depending upon sensor or reference resistance, The
pulses are fed to a buffer amplified transistor which AM modulates to cut off
a standard pencil friode 1680 mHz cavity-oscillator radiosonde transmitter
tube. A solid-state switching circuit and a relay are employed to switch to
and from the temperature sensor and reference resistor.
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TABLE 5-14

ROCKETSONDE INSTRUMENTS

INSTRUMENT

Delta

DMQ-6

Gamma

Borg-Warner

Gamma ||

Arcasonde

PMR I

Arcasonde 1A *
Resistance Wire
Metrosonde

Servo-mech Sonde (SMI)
Arcasonde [I-A

DMQ-9 *

Arcasonde |l

Datasonde *

Delta (T.F.)
Stratospheric Temp. Sonde (STS)*
Mini Loki (S.T.S.M.L.)
Echosonde

Solid State Arcasonde
Hasp WOX [-A*

Hasp WOX 3-A

Note: * Operational Instruments

STATUS

Obsolete

Obsolete

Obsolete

Obsolete

Obsolete

Obsolete

Obsolete

Operational in Arcas (USAF)
British Skua

Obsolete

Obsolete

Experimental

Operational in Arcas (USAF)
Obsolete

Operational in Loki Dart (USAF, USA, USN)
Obsolete

Operational in Arcas (WSMR)
Obsolete

Obsolete

Developmental

Operational (USN)

Obsolete
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FIGURE 5.3-18 Stratospheric Temperature Sonde STS-1
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FIGURE 5.3-19 Stratospheric Temperature Sonde STS-1 Electrical Circuit Diagram
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The transmitter oscillates at a nominal fre-
quency of 1680 megacycles and generates approximately 500 milliwatts
of power at a plate voltage of 120 volts. This gives an exireme range of
approximately 160 km for small quadrant elevafion angles when the trans-
mitter is used in conjunction with the Rawin receivers AN/GMD-1 and
AN/GMD-2. The antenna is a brass dipole above a copper, conically
shaped ground plane and serves to match the tube impedance to that of
the antenna.

5.3.4.3.2 Arcasonde - 1A.

The Arcasonde=1A as shown in Figure 5.3-20
has been developed by Atlantic Research Corporation for use with the Arcas
rocket as an AN/GMD-1 type instrument. This instrument includes a thin-
film Mylar thermistor mount, a replaceable dry-cell power pack, a block-
ing oscillator data circuit and an electronic commutator. The Arcasonde~1A
telemetry package consists of an integral-cavity-oscillator transmitter,
operating in the 1660-1700 mHz band, modulated by a blocking-oscillator-
type pulse generator at rates between 10 and 205 pulses per second. An
electronic commutator provides a reference pulse rate of six seconds duration
after each 20 seconds of thermistor dwell. The instrument is modular in
designing; complete functional units can be interchanged or replaced in the

field.

The instrument components are shown in
Figure 5.3-21 and a simplified block diagram is presented in Figure 5.3-22.
Arcasonde 1A specifications are presented in Table 5-15.

5.3.4.3.3. AN/DMQ-9.

The DMQ-9 instrument, as shown in Figure 5.3-23,
has been developed by USAF-CRL for use with the Arcas rocket as a GMD-2
type transponder instrument.

The basic instrument package is a 3.3 Ib instru-
ment which consists of a 403 megacycle self-quenching super-regenerative
receiver, a 1680 megacycle radiosonde transmitter, receiving and transmitt-
ing antenna assemblies, motor actuated sensor switches, elecironic circuitry
to properly modulate the fransmitted carrier and a battery power supply.

The 403 megacycle receiving antenna system is
located directly above the power supply module. Four 1/2 inch wide steel
strips making up the receiving elements are eyeleted fo a glass epoxy disc
and retained in a folded position by the nose cone. After the nose cone is
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FIGURE 5.3-20 ARCASONDE 1A Instrument & Nose Cone

- 181 -



1. Base 5. Battery Pack

2. Screw 6. Spacer

3. Battery Housing 7. Transmitter Encapsulated

4. Screw 8. Thermistor

FIGURE 5.3-21
ARCASONDE 1A Instrument Components
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TABLE 5-15

ARCASONDE - 1A SPECIFICATIONS

Height
Maximum Diameter
Weight

Transmitter Type

Frequency
Modulation

Power Output
Antenna
Temperature Sensor
Power Supply

Battery Life

29.6 cm (11.66 in)
11.1 cm (4.38 in)
2,04 kg (4.5 Ib)

Pulse-modulated
cavity oscillator

1660-1700 mHz

10 - 205 pps

300 mW

Helical Slot

10-mil coated bead thermistor
Dry battery pack

3 Hours (at 20° C)
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FIGURE 5.3-23 AN/DMQ-9 Rocket Insirument Package
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discarded at apogee, these elements open to a position normal to the
longitudinal axis of the package. The battery pack is clamped against
the receiving antenna deck. Access is provided to the battery area by
removing the two screws by which the battery holder is attached fo and
forms an integral part of the structure.

The next section of the package consists of
three modules: the 1680 megacycle cavity oscillator (encapsulated in
foam plastic), the self-quenching super-regenerative receiver, and the
blocking oscillator and 81,94 kc slant ranging signal amplifiers. The
last two modules are shielded against r.f. interference. The lower disc
to which these modules are attached comprises the eiched circuit 1680
megacycle dipole antenna.

A scanning switch subassembly, consisting
of a motor driven cam that actuates two snap-action switches, is located
immediately above the electronic modules. The motor shaft rotates at
3 rpm and the four lobe cam is of such design as to alternately switch between
reference and temperature with a dwell of approximately 4.5 seconds on
either, plus and "off" time of approximately 0.5 second preceding each
switching operation,

A sensor mounting plate is located at the forward
end of the instrument package to accommodate a plug=in type sensor
assembly .

The electronic circuitry consists of a 403 mHz
self~quenching super-regenerative receiver which receives and detects the
81,94 kHz amplitude modulated carrier from the Rawin Set AN/GMD-2
transmitter. The 81.94 kHz signal is in turn retransmitted on a 1680 mHz
carrier (FM) to the Rawin Set where phase comparison of the outboard and
incoming modulation permits direct measurement of slant range. Switch~
ing between the meteorological sensor and reference resistor is accomplished
with cam actuated snap=action switches and the signals derived therefrom
are used to frequency modulate the 1680 mHz transmitter at a rate of
approximately 20 to 200 cycles per second. Power for the sonde is obtained
from a silver oxide~zinc battery pack in conjunction with a DC to DC
converter.

A block diagram of the circuit shown in

Figure 5.3-24. Figure 5.3-25 is a schematic diagram of all the components
incicated in the following detailed description.

- 186 ~




403 MC

le&o MC
L.F. aSCILLATOR.

144

SUPERREGCENERATIVE & Ko &z Ko
RECEIEL el AMPLIFIERS | MODULATOE, e
or @Z, Q3 ¢4 @5
SENSOR Bl ock/ps FrEe
SENSOR e Swnrcy | OSCULATOR. (e s
o7 @6
Suvee- zmwe

gamrerey | |  POC

COMEETER,

PACK

Figure 5.3-24 AN/DMQ-9, Block Diagram

-187 -




EENCEINCH]
>3 Ol 2a - ~vL2'e2d
6902 N1 i‘l
v .
_ BEOINZ
€0

jol N el=1c1
AZLLINSNYAL

woz 690zN1 T - ; - NIB2AS
j -4 o VETON .
MOIZA M B
Nmozaa
44001
—l A!hlm,U
THOLVTIIOSC SONIOoTE
A0LvINdon — -
SFIANINY oA 28 ; _
I
34001 OED _
DWW EOCY _
Aosl| EEINESEE]
-$13 _
_ 23
ELINCT) N _
4400t IED yyoyne g _
SO
YOVYNZ
o 44011 g _
= T ]

2 aee _
A‘w €1 _
LN

1d

!
i

woiBbiq SUDWEYRS ‘6-OWA/NV §Z-€°G 24nbBid

- 188 -




Self-Quenching Super-regenerative Receiver.

The 403 mHz signal received by the sonde is
inductively coupled from the antenna to the input tank of the super-reg-
enerative detector Q1. Trimmer capacitor C2 is the only adjustment
necessary to tune the receiver to the specific operating frequency of the
Rawin Set transmitter. The quench voltage, a saw~tooth signal approx-
imately two to three volts in amplitude at the collector of Q1 and having
a frequency of approximately 400 kHz, is generated within the detector
stage itself. This frequency is determined principally by C5 and the
distributed parameters of the circuit. The effect of the quench signal is
to alternately drive the detector into and out of self-oscillation.

The initial portion of the self-oscillating
condition may be considered a sampling period at which time the amplitude
of the 81.94 kHz modulation on the 403 mHz carrier influences the per-
formance of the stage during the remainder of that particular quench cycle.
Thus, over a number of quench cycles the collector current of the super-
regenerative detector consists of components at the modulation frequency
(81.94 kHz), the quench frequency (400 kHz) and the carrier frequency
*403 mHz). These latter two frequencies are appreciably attenuated
from the desired 81.94 kHz signal by means of components L2 and C8, and
L5 and C10 respectively.

81.94 kHz Amplifiers and Modulator.

The super-regenerative detector is followed with
an amplifier, Q2, having an output tank, C12 and L6, tuned to resonance
at 81.94 kHz. The overall gain of this stage is approximately 15. A portion
of the 81.94 kHz signal appearing across the tank is tapped off and futher
amplified by a factor of approximately 10 in Q3. No further amplification
takes place through Q4 which serves as an impedance matching element
between Q3 and the transmitter modulator Q5.

The modulator, an emitter follower is parallel
with cathode resistor R17 of the 1680 mHz cavity oscillator, changes the
effective cathode bias of the r.f. oscillator as a function of the 81.94 kHz
signal. As a result, the oscillator produces a frequency modulated carrier
having a deviation of approximately 175 kHz for the 81.94 kHz ranging
signal at threshold 403 mHz input to the sonde receiver.
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Blocking Oscillator.

The blocking oscillator, Q7, is a transistorized
(2N2905A PNP silicon epitaxial), relaxation oscillator which utilized half of
the primary windings of transformer T1 for feedback. The other half of the
primary is connected to the 1.5 volt supply. The combination of low supply
voltage and high reference resistance, R22, in the sensor loop, results in
a maximum power dissipation in the temperature measuring thermistor of
approximately 6 microwatts. Reference frequency is a function of the
inductance of the transformer, the reference resistor. and capacitor C19.
If required, padding capacitor C20 is added fo give . reference frequency
of approximately 190 cycles per second.

Buffer stage Q6, conrected as an emitfer
follower isolates the blocking oscillator from 1680 mHz oscillator. The out=
put of this stage, approximately 0.75 volts peak negative pulses about 85
microseconds wide, is applied to the grid of the fransmitter to shift the
carrier frequency at the repetition rate generated by the blocking oscillator.

1680 mHz Transmitter.

The 1680 mHz transmitter V1 is, with the
exception of a sub-miniature coax cable fitting for the antenna output jack
a standard 6562 single tuned cavity oscillator as used in other radiosonde
applications. Grid resistor R18 is selected to give a plate current of
approximately 30 ma. The fransmitter is frequency modulated by both the
81.94 kHz ranging signal and meteorological intelligence as described
above. To prevent environmental factors from affecting the transmitter,
such as severe frequency shifts or complete failure, the tube is potted
in a foam=in-place resin.

Power Supply.

The primary power source for the instrument consists
of four Eagle~Picher type 1515 silver oxide-zinc cells that will provide approx-
imately three hours of operation. A freshly activated battery pack has an initial
output voltage of about 7 volts which decreases to 6 volts after the first few
minutes of use. The full 6 volts potential is used for the transmitter filament,
the switching motor and as the input to a DC-DC converter. A 1.5 volt connect-
jon feeds the blocking oscillator. A two-pole, double~throw power switch is
provided.
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The DC-DC converter supplies the operating
voltages for the remainder of circuitry. Oscillation of the transistorized
converter is initiated by starting resistor R23 in the otherwise symmetrical
configuration. The frequency of oscillation is approximately 1kHz as
transistors Q8 and Q9 alternate operation in an on-off condition. Feed-
back is provided by the base fo emitter transformer windings. The square
wave voltage produced by this circuit is stepped up by the transformer and
the output is rectified by the full wave bridge consisting of CR1, CR2, CR3
and CR4. Final filtering by C25, R26 and C26 provides a substantially
ripple~free plate supply of approximately 118 volts which is used for the
transmitter directly and also as the source from which zener diode VR 1 pro-
vides a nominal 10 volt supply for the receiver, 81.94 kHz amplifiers and
buffer stages. Filter components L7, C28 and C29, mounted on the rear of
_the receiver case, attenuate DC-DC converter noise on the 10 volt line.

To improve the stability of the receiver and to
assure satisfactory operation of the super-regenerative detector stage with
normal variations in circuit parameters, the supply voltage to the receiver
was increased from 6 volts to approximately 10 volts prior to the final
series of flight tests. The higher voltage was obtained with a zener diode
voltage regulator circuit operating from the nominal 115 volt B+ generated
by the DC-DC converter.

Antennas.

The receiving antenna is a configuration of
four, half wavelength elements spaced 90 degrees apart on the mounting
board. These elements feed half wavelength segments of sub-miniature
coaxial cable in such a manner as to produce the equivalent effect of
two mutually perpendicular dipole antennas.

The transmitting antenna is an etched circuit,
centerfed dipole made up of two 152° segments of copper - one on each side
of the base material. A length of sub-miniature coaxial cable connects the
radiating elements to the 1680 mHz oscillator.

- 191 -



5.3.4.3.4 Datasonde.

The Datasonde as shown in Figure 5.3~26 is
a miniature 1680 mHz instrument which has been designed for the Loki Dart
and is operationally used with the GMD~-1.

The instrument is 13 ounces in weight, 11.1
inches in length and 1.1 inch in diameter, with the antenna at the forward
end and the sensor at the aft end. The electronic system and batteries are
enclosed in a thin phenolic-fiberglass tube, and all voids are filled with an
encapsulation compound. The electronics are solid-state except for the
standard pencil tube triode cavity oscillator transmitter tube used for
1680 mHz radiosondes. The data modulation circuit consists of a unijunction
relaxation oscillator. The power supply consists of a rechargeable nickel-
cadmium battery and @ DC~DC converter. Solid-state switching circuits
are employed for switching between data and reference channels.

The Datasonde employs the thin film mylar
loop thermistor mount which has been developed by Space Data Corporation
specifically for this instrument. A rather unique feature of the Datasonde
design is that the antenna of the instrument energizes the nose tip of the
dart to obtain an uptrack signal during vehicle ascent.

Flight tests of the Datasonde instrument have
been conducted by USAF~CRL to determine the telemetry accuracy. Pre-
cision resistors were flown instead of the thermistor. The telemetered
resistance values were compared with the laboratory values to determine
that the telemetered accuracy was within the equivalent of * 0,5° K
over approximately ten flight test units. This error estimate includes errors
in the ground-equipment and in the reading of the AN/TMQ ~5 recorder
chart.

5.3.4.4 Miscellaneous Instruments.

The Arcasonde~2B transponder instrument has been devel-
oped by Atlantic Research Corporation for use with the Arcas rocket and the
GMD-2. It is essentially similar to the AN/DMQ~-9 which the Air Force
has standardized.

The Arcasonde-2B telemetry package consists of a 403 mHz
receiver to detect the AN/GMD-2 range signal and an integral-cavity-
oscillator transmitter operating in the 1660-1700 mHz band. The transmitter
is modulated by a blocking-oscillator~type pulse generator at rates from
10 to 205 pulses per second. An electronic timer alternately samples a
stable reference resistor and the thermistor, with dwell times of six seconds

on each. A blanking circuit prevents pulsed data from modulating the
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FIGURE 5.3-26 DATASONDE INSTRUMENT CONFIGURATION
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iransmitter for 0.5 seconds after each reterence or data sample, permitting
use of the instrument with automatic data-handling equipment. The
instrument is modular in design; complete functional units can be inter-

changed or replaced in the field. The specifications are presented in
Table 5-16.

To the best of our knowledge the Arcasonde-2B is not
being used operationally since the Air Force has standardized and is using

the AN/DMQ 9.

The Arcasonde 3 transponder instrument is shown in Figure
5.3-27. 1t was incorporated with the Denpro system to telemeter sensor
information from the ascending probe and to obtain a frack without the need
for radar support. The Arcasonde 3 telemetry package is designed to
function during the ascent of the Arcas sounding rocket vehicle. Transmitt-
ing in the 1660-1700 mHz band of the standard meteorological telemetry
receivers, the package can process input from both variable voltage and
variable resistance sensing elements. Pulse repetition rates from 100 to
1000 pps provide higher resolution than the standard GMD sondes in tele-
metered data. Optional features include a 403 mHz receiver for slant
range measurement with the AN/GMD-2 Rawin set and « timing unit to
allow sequential sampling of several sensors. The Arcasonde 3 package
was designed to fit into the parachute canister of the standard ARCAS rocket
vehicle. Receiver antennas are stowed flush with the rocket’s external
surface during the high~dray portion of the flight and extended at a 45°
angle in the upper atmosphere. The package is modular in design with
printed circuit intermodular connection. Complete functional units can
be interchanged or added in the field. External jacks allow use of a ground
power supply for prelaunch testing and standby. A block diagram is pre-
sented in Figure 5.3-28 and specifications in Table 5-17.

Resistance wire sondes have been flown by the British on
the Skua rocket and by the Japanese (Echo-sonde) on the MT~135 rocket.
Very little information is available on these sondes except that they tele-
meter at the 1680 mHz carrier frequency and are about the size of the
Arcasonde-1A. These sondes employ resistance wire instead of a thermistor
as the temperature sensor. Since the change in resistance of the wire with
temperature is very small, rather expensive preamplifiers (by American
standards) must be employed to boost the sensor signals from the microvolt
region to volts in order to modulate the telemetry transmitter.
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TABLE 5-16

ARCASONDE - 2B SPECIFICATIONS

Height
Maximum Diameter
Weight

Transmitter Type

Frequency
Modulation
Power Output
Antenna

Receiver Type

Frequency

RF Sensitivity
Antenna
Temperature Sensor
Power Supply

Battery Life

29.6 cm (11.66 in)
11.1 ecm (4.38 in)
2,04 kg (4.5 1b)

Frequency - modulated
cavity oscillator

1660 - 1700 mHz
10 - 205 pps

300 mW

Helical slot

Super-regenerative
detector, self quenched

400 - 406 mHz

50 mV

Dipole

10-mil coated bead thermistor
Dry battery pack

2 Hours (at 20° C)
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-27 Arcasonde 3

FIGURE 5.3
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TABLE 5-17

ARCASONDE 3 SPECIFICATIONS

Height
Diameter

Weight (including optional
receiver)

Transmitter Type

Frequency
Modulation
Power Output
Antenna

Receiver (Optional) Type

Frequency
RF Sensitivity

Power Supply

31.1 cm (12,25 in)

11.4 cm (4.5 in)

2,95 kg (6.5 Ib)
Frequency - modulated
cavity oscillator
1660-1700 mHz

100 ~ 1000 pps

300 mwW

Two quarter-wave dipoles

Super-regenerative detector,
separately quenched

400 - 406 mHz
50 mV

20 silver-zinc cells, 28 vDC
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5.3.5 AN/SMQ-1 Telemetry Systems.

5.3.5.1 General.

The AN/SMQ-1 systems operate at a carrier frequency of
403 mHz and employ pulse rate modulation as do the GMD systems,
However, instead of pulsing the transmitter off as in the GMD systems,
the modulation pulses the transmitter on through a pulse transformer thereby
eliminating the DC-DC converter of the GMD sonde systems. More important,
however, is the fact that the typical duty cycle of the pulses is from about
0.2 to 2.0%. Therefore, the SMQ airborne systems are turned on and
radiating only 0.2 to 2.0% of the time while the GMD systems are turned
on and radiating about 99.8 to 98.0% of the time during the relatively long
dwells between pulses. This means that the SMQ sondes can be made smaller
and lighter than the GMD sondes. This is a distinct advantage for improving
the ballistic coefficient of the rocketsonde decelerator systems, since in
addition to a decrease in weight more payload volume is made available to
the decelerator. Another advantage is that for a given signal strength at
the receiver site and a given slant range, the required power radiated from
the sonde is considerably less for the 403 mHz carrier than for the 1680 mHz
carrier. Also the SMQ ground-based receiver system does not require a
tracking antenna and is much simpler to maintain and is considerably lower
in cost. The only disadvantage of the SMQ systems is that they do not
track and require radar support for altitude and wind data.

3.3.5.2  Ground-Station Equipment.

The ground-station equipment consists of the Navy developed
AN/SMQ-1 Radiosonde Receptor or the smaller transistorized version of this
set developed by the U. S. Weather Bureau.

Radiosonde Receptor AN/SMQ-1 is a receiving and recording
device operating in the frequency range of 390 to 410 mHz. The receptor
is employed in a HASP Ill system to receive and record upper atmospheric
temperature data from the HASP Radiosonde Set WOX~1A. The components
of the receptor are the antennq, receiver, recorder, power supply, electrical
cabinet and a paper table.

The antenna is approximately 1-1/2 feet high and is designed
to operate effeciently over a frequency range of 390 to 410 mHz. One hundred
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feet of coaxial cable is supplied with each antenna. One end of the cable
is fitted with a male plug for connection to the antenna input jacks; the
other end is connected to the top rear corner of the electrical cabinet by
four type N connectors on the cabinet. PMR has developed a helical
antenna for use with rocket system for a higher antenna gain,

The receiver is designed for receiving the radiosonde pulse
modulated radio frequency signals on a continuously variable tuning range
of 390 to 410 mHz. The receiver amplifies, demodulates and converts the
signals to d.c. voltage. The magnitude of the d.c. voltage appearing af
the receiver output is directly proportional to, and varies in exact accordance
with, the received signal pulse repetition rafe. A loudspeaker for aural
moniforing and an oscilloscope for visual monitoring are included in the
receiver circuitry. All operating controls, the loudspeaker, and the oscillo-
scope are located on the receiver front panel. A coaxial type antenna
switch is located on the back of the receiver front panel. The control for
this switch is on the front panel. It permits selection of four antenna inputs
and provides means for grounding the receiver antenna input. The d.c.
output of the receiver is fed to the recorder.

The recorder displays the data from the receiver on roll chart
paper. The voltage output from the receiver is applied to a servo~drive motor,
which actuates an ink pen through a system of shafts, gears and a pulley wire.
The ink pen records data on moving chart paper which is driven over three
paper rolls by a chart drive motor. The chart paper is graduated in 100
divisions across the paper. Readings on the chart usually correspond to
half the pulse rate of the RF signals in pulses per second (pps) from the radio-
sonde.

The power supply operates from a 115~olt, 60-cycle, a.c.
source and supplies all of the voltage requirements for the receiver and
recorder. Power and heater on-off switches and associated pilot temperature
indicators and blown fuze indicators are recessed in the upper center of the
front panel.

The elecirical cabinet is a shock mounted, drip proof, metal
structure provided with space heaters and sliding drawers. The top drawer
contains the receiver; the middle drawer contains the recorder, and the bottom
drawer contains the power supply.
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The radiosonde signal received by the receptor consists
of pulses of 403 mHz radio frequency energy. The frequency of repetition
of these pulses is dependent on meteorological conditions. Each pulse is
approximately 250 to 275 microseconds in duration and the pulse repetition
frequency may vary from 10 to 200 pulses per second. The received signal
pulses will generally be a series of pulses at one audio rate followed by
a series at a different audio rate. Each series of pulses will cause the
receptor to print on the chart in a position determined by the audio rate of
that particular series of pulses.

The received pulsed signals are fed from an antenna through
the signal selector switch to the R.F. section which contains an R.F. amplifier,
mixer and local oscillator. The output of the R.F. Section is fed to the |.F.
strip which consists of five stages of |.F. amplification. The second and
third stages of amplification are available to adjust receiver gain while the
fifth stage acts as a first limiter. The |. F. output is fed to the detector
section consisting of a limiter and a discriminator. The discriminator is
used as a slope detector and its output in the form of negative d-c pulses is
fed into the audio section.

The audio section contains a pulse amplifier, clipper and
a pulse shaper. This section amplifies and shapes the input signal and
eliminates noise to form a strong consistent trigger pulse to the frequency
meter section which follows. In addition, the output of the pulse amplifier
is fed as the observed signal to the vertical amplifier in the video monitor
circuit.

The frequency meter section converts the pulsed signals in-
to varying d.c. voltages to control the servo system in the recorder. It also
provides signals for the audio and video monitors. This section consists of
a trigger gate, a multivibrator, a ringing and damping circuit, a pulse
generator, filter and attenuator in the order mentioned. As the signal pro-
gresses through the frigger gate and multivibrator, it is further stabilized.
The multivibrator output energizes a ringing circuit which is damped after
each first half cycle providing strong trigger pulses to the pulse generator.
The pulses are accurately formed by the pulse generator and its associated
delay line and fed into a lowpass filter which converts them into a positive
d.c. voltage proportional to the repetiiton rate. The d.c. output is fed
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into an attenuator which provides a means of accurately calibrating
the signal to the recorder.

Video and audio monitoring are provided as a means
of tuning and maintaining proper receiver gain. The audio signal is
picked up from the multivibrator output, while video signals are obtained
from the multivibrator in the frequency meter section, and from the pulse
amplifier in the audio section.

The recorder section consists of comparator circuits, a

60 cycle servo amplifier and a pen drive servo system to which a poten-
tiometer is connected, feeding back a reference signal to the comparator.
The varying d-e output from the receiver is combined with the reference
signal from the potentiometer. The resultant is amplified and fed to the
servo motor as a directional signal moving the pen to a position proport-
ional to the pulse rate of the received signal. Limit stops prevent over=
travel of the pen. A two=-speed chart drive system allows a selection of
chartpaper feed.

The power supply provides the necessary voltages for all
signal and control circuits. This unit provides regulated and unregulated
6.3v a-c for filaments, +400 volt unregulated, regulated and unregulated
270v d-~e, regulated +150 v d~e and ~430 v. d~c unregulated supplies.

In addition, all 115 v. a=c supplies are controlled by the main power switch
in the power supply. A block diagram of the AN/SMQ-~1 is presented in
Figure 5.3-29.

5.3.5.3 Rocketsonde Instrumentation.

The WOX-1A has been developed and standardized by the
U. S. Navy for use with the HASP 11l (Loki Dart type) rocket and the
AN/SMQ-1 ground-based receiver.

The radiosonde, externally is cylindrically shaped, approx-
imately 11 inches long, 1.4 inches in diameter and weighs 22 ounces. In
ejection, as the payload package leave the body, a spring-loaded button
on the radiosonde body is released to start the radiosonde operation. After
ejection, the payload package opens to release the parachute by the action
of two flat springs placed between the staves and insulation strips inside
the staves. The staves, piston and closure plug separate from one another
and from the parachute-radiosonde payload, leaving the parachute free to
open with the aid of the radiosonde's weight.
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The radiosonde collects and fransmits temperature data
to a ground or shipboard Radiosonde Receptor AN/SMQ~1. The major
components of the radiosonde, shown diagrammatically in Figure 5.3-30
are a 6 volt nickel-cadmium battery, @ temperature sensor, d transistor-
ized modulating circuit and a fransmitter which telemeters on a 403 mHz
frequency. The transmitter is coupled to an antenna wire which is also
a connecting line from the radiosonde to the non-radiating riser of the
parachute. In addition to the antenna wire itself, the steel case of the
radiosonde is used as a part of the antenna.

The battery of the radiosonde powers the radiosonde
operation. Prior to launching, the battery is slow-charged for a six~
hour period. A closure plug in the forward end of the body is fitted with
a removable screw fo provide access fo the connector for battery charging.

The temperature sensor of the radiosonde is a bead ther-
mistor, through which a current is passed. The transmitter transmits a
pulse modulated radio frequency signal whose pulse rate is dependent on
the resistance of the thermistor and, therefore, the atmospheric tempera=
ture.

The pulse rate fransmitted depends not only on resistance
of the thermistor, but also on changes in the operation of the radiosonde
components due to atmospheric temperature and a depletion in battery
voltage. To correct for the irregularities, a reference resistor of accurate=
ly known resistance is put in the radiosonde on a circuit separate from the
thermistor circuit. Signals, called reference signals, from the known
resistor circuit are transmitted for two-second intervals alternately with
temperature data signals from the thermistor circuit, which are transmitted
for four-second intervals. These alternating signals are received and
recorded on rolled chart paper by a radiosonde receptor. Combining the
two signals eliminates consideration of the adverse effects of temperature
and voltage loss.

The Radiosonde Set WOX~1A is comprised of essentially
four electronic functioning blocks; namely, a commutator, an analog to
frequency converter, a driver-modulator stage and a UHF transmitter-
antenna section. Due to the severe environments encountered during flight
and also the limited volume available for both the electronic circuitry
and the power supply, semiconductors were used for all the active circuit
components except for the transmitter. A schematic is presented in
Figure 5.3-31.
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The two channel commutator circuit in the WOX-1A
system is an asymmetrical free-running multivibrator that samples the air
temperature sensor for a period of four seconds, then subsequently samples
a fixed precision reference resistor for a period of two seconds. The time
sharing sequence was selected to obtain a maximum sampling of the
temperature altitude profile with a minimum loss due to sampling the
reference.

The subsequent functioning block consists of the amplify-
ing stages and transmitter modulator. The modulator is designed to
deliver 3.0 ampere pulses at 5.0 volts which represents 15.0 watts of
pulsed power. This capability required an amplifier section with a power
gain of approximately 35 db. The blocking oscillator was designed to
delivery 3.0 volts into a 2000 ohm load. The value of 2000 ohms was
sufficiently high so that its reflected impedance into the blocking
oscillator circuit during the pulse did not affect the repetition rate.
The first stage, Q6, is essentially an emitter follower having a minimum
current gain of approximately 10. An output current of the order of 15 ma
is realized from an input current of 1.5 ma. The collector voltage remains
constant at 1.5 volis during the pulse. The second amplification stage,
Q7, provides a minimum gain of 10 resulting in a base drive to the
modulator, Q8 of 150 ma. The 10 ohm resistor, R18, in the collector of
the second stage limits the current below the maximum dissipation of the
2N597. The 100-ohm resistor, R17, in the base circuit of the modulator and
diode 1N93, CR4, in the emitter leg provides DC stabilization and prevents
thermal runaway. The TN93 was selected on the basis of its current carrying
capacity of 3.0 amps during the pulse. With 150 ma into the base of the
modulator and a minimum beta of 20 the collector current is of the order
of 3.0 amps. During saturation the maximum voltage across the pulse trans-
former is approximately five volts; the remaining voltage is distributed
across diode CR4 and the collector to emitter junction of 2N670. The
diode in the emitter circuit of the modulator insures cutoff at high temp-
eratures thereby preventing thermal runaway. The 2N670 also has a
specially designed heat sink, which is also an aid to prevent thermal
instability.

The pulse modulating transformer, which was designed at the Naval
Ordnance Laboratory, has special characteristics that were not available
in commercial types. The magnetic core is grain oriented silicon steel
with a relatively high maximum flux density. The primary and secondary
are wound on the magnetic toroid such that the leakage inductance is
extremely small. The wire size was selected so that the resistance losses

- 207 -



are equal in each winding. The core size and the wire stacking make
maximum utilization of the geometric volume available in the package.
The inner diameter of the complete wound toroid was required to accept
the 2N670 transistor and heat sink. The tertiary winding is used to reset
the core so that the entire change in flux can be realized. This results
in a more efficient and smaller size transformer. The current use for
resetting the core is the filament current for the transmitter tube. The
modulator stage is capable of delivering 3.0 ampere pulses of current

at 5.0 volts. The B+ pulses appearing at the plate of the transmitter are
in the order of 240 volts at 40 ma.

The transmitter uses a Colpitts type oscillator capable
of delivering 3.0 watts of peak power at 403 mHz. The oscillation tube
is a UHF friode, type 5718, The oscillator circuit utilizes the inter-
electrode capacity for positive feedback from plate to grid. The
oscillator frequency is adjusted by a vernier capacitor across the printed
circuit coil. The tuned inductance is a printed copper coil on Rexolite
dielectric. This material is superior for low loss qualities and is ideal
as a dielectric for high frequency-circuits. The oscillator is completely
shielded in a copper case which minimizes radiation other than via the
antenna. The shield also serves to "fix" the siray distributed capacitance
and inductance parameters for better frequency predictability.

The R.F. power for the triode is directly coupled to a
center-fed fullwave antenna. The antenna is asymmetrical; one-half
is a stainless steel cylinder which houses the transmitter and telemetry
circuit, while the other is a thin stranded copper wire of one-half
wavelength, The thin wire also acts as a supporting cable attached at
the upper end to the parachute. This asymmetrical antenna itself is not
a simple geomefric configuration, consequently the impedances and
current distributions are difficult to solve analytically. Approximations
to the exact impedance equations were made in order to obtain results
that could be used in resolving the antenna parameters and matching
network. The final antenna parameters were adjusted empirically to
yield optimum R. F. power radiation in free space.

Although initial procurement quantities of the WOX-1A
were unreliable in flight performance, a change from germanium to silicon
transistors improved the conditioning temperature capability of the
instrument. Recent production units have demonstrated sufficient reliability
to consider the system as operational.
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Design limitations of the WOX~-IA have led to funding
by NOL for the development of an advanced version which is called the
WOX~4A. Design goals for this new instrument are for a smaller diameter
(1.1 inches), a shorter instrument length (6 inches), a lighter weight
(6 ounces) and a thin—film mylar thermistor mount. The original WOX-1A
must be flown in a 1-5/8 inch diameter dart which does not achieve
adequate altitude. The new instrument will fit into the 1-3/8 inch dia-
meter Navy chaff darts. The shorter length of the new unit will permit
more space for the rocketsonde decelerator, and the lighter weight will
improve the ballistic coefficient of the descent system for slower fall
rates. The older WOX~1A uses a rather heavy thermistor fiber mounting
structure which voids the temperature measurements above 150,000 feet.
The new thin-film mounts should upgrade the temperature measurements
to the current state—of-the-art.

5.3.6 Advanced Concept-Motorola Study.

5.3.6.1 General.

Motorola Inc., has been funded by AFCRL to conduct a
design study for an advanced meteorological telemetry and tracking system for
both radiosondes and rocketsondes. The purpose of developing an Advanced
Meteorological Sounding System (AMSS) is to update the present system
with particular emphasis on improved reliability, decreased operating costs
and increased accuracies. As opposed to the present ground based meteoro-
logical tracking system, the AMSS provides a smaller and lighter radio-
sonde, improved ranging and telemetry accuracies, higher data rates
including a continuous data channel, unambiguous ranging to 580 kilo-
meters, digitized output data and a solid state design throughout.

The objective of the AMSS was to develop a ground based
meteorological sounding system which would effectively use modern design
techniques in the gathering of accurate meteorological data. The system
evaluation did not include any study of the meteorological sensors, air-
borne vehicles (balloons or rockets) or final dafa processing equipment.

In selecting a system configuration the following guidelines were used:

1. The system design should favor techniques
which reduce operating complexity and
_ minimize maintenance and technical
obsolescence. Design mechanization should
include maximum utilization of solid state
and integrated circuits.
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2. The design should emphasize simplifi-
cation of the flight expendable radiosonde
and make use of techniques which would
reduce cost, weight and power consumption.

3. The ground equipment should be designed
with adequate performance margins to
achieve long life and maximum reliability.

4. The system performance should exceed that
presently available from the existing AN/
GMD=-2 system.,

In keeping with the program objectives a study was con-
ducted to develop a system which would reflect as many of the current design
capabilities as possible. During the initial stages of the program a number
of trade studies were made in an attempt to arrive at the optimum system
configuration. At the conclusion of this synthesis and analysis period
certain portions of the system were implemented. This included both the
radiosonde and ground equipment, and after a laboratory evaluation a
number of balloon borne flight tests were made. These tests were primarily
concerned with the range and telemetry functions in which overall system
performance was demonstrated. Although a number of configurations are
possible, that which was selected is shown in a simplified block diagram
in Figure 5.3-32, Some of the more significant system characteristics are
shown in Table 5-18 and although this table may briefly describe the
proposed system, it is of interest to compare this with the systems that
are currently operating in the field. This is done in Table 5-19 in which
the AMSS is compared to the present AN/AMQ-9. These two systems
differ in a number of areas but probably the most noticeable is in the radio-
sonde configuration and ranging system.

The primary measurement parameters are slant range,
antenna angle data, time and four telemetry channels. The telemetry data
may consist of temperature, humidity, pressure or whatever is desired.
From the above raw data suitable processing will allow computation of such
meteorological information as winds aloft, altitude, temperature and
humidity profiles, air densities, refraction indices and so forth.
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TABLE 5-18

ADVANCED SYSTEM CHARACTERISTICS

Maximum Slant Range
Uplink Frequency
Uplink Power

Uplink Data

Uplink Modulation Form

Radiosonde Receiver Type

Radiosonde Output Power

Radiosonde Transmiiter
Type

Downlink Data

Downlink Modulation
Form

Ground Receiver Type
System Acquisition Time

Information

Range Resolution
Ranging System
Telemetry Resolution

Ovutput Data Form

300 km

400 -~ 406 mHz

30 Watts

Range

FM at Index of 0.7
Superheterodyne

35 Milliwatts

Crystal Multiplier

Range and Telemetry

PM
Phase Locked
10 sec
Time
Antenna Pointing Angles
Slant Range
Telemetry = 3 Time Shared Chan
1 Continuous Chan
5 Ft. Unambiguous to 580 km
Bi=Phase RN
0.02% of Full Scale
Punched Tape
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TABLE 5-19

AN/AMQ=? VS. AMSS COMPARISON

Item

Sonde Receiver Sensitivity
Sonde Recelver Type
Sonde Receiver Selectivity
Sonde Transmit Poveer
Sonde Transmit Fraquency

Sonde Frequency Stability
Downlink Modulation Form
Ranging System -
Allowable Range Error (sonde)
Unambiguous Range

Range Resolution

Range Exir Construction
Telemetry Form

Telemetry Channels

Frame Rate

Commutator Construction
Sonde Weight

Sonde Power Requirements

AN/AMGH

501V or =73 DBM @ 50 ohms
Super-regenerative
3 DB Bandwidth: 60 mHz

300 Milliwatts
ungble 1660-1700 mHz

t 4 mHz

FM

81,94 kHz Tone

560 feet

115 Miles

3 feet

Electro=Mechanical

Blocking Oscillater

Two Time Shared

One per 20 seconds
Mechanical

925 grams less Battery
7.58 Watts

=213 -

AMSS

96 DBM
Superheterodyne

IF Bandwidth: 300 kHz
35 Milliwatts

Crystal Selection
From 1668~1693 mHz
t 75 kHz

PM

64 kHz @ PN

t 100 feet

365 Miles

5 feet

Electronic

Two Subcarriers

One Continuous
Three Time Shared
One per second

Solid State

705 grams less Battery
3.4 Waits




The uplink signal consists of a 403 mHz carrier which
is frequency modulated with a PRN ranging signal. The maximum transmit
power is 30 watts in which the actual level is controlled by the receiver
AGC. Such a coarse control limits the signal range over which the trans-
ponder must operate and this in turn aids in decreasing the group delay
variations within the radiosonde. The transmitter output is fed to the
antenna system, which radiates the signal to the radiosonde. The frans=-
ponder, operating as a superheterodyne receiver, converts the 403 mHz
received carrier to a 17 mHz IF. This is then applied to a standard dis-
criminator which detects the range signals and PM modulates the down~
link carrier. In addition to the ranging signal, two telemeiry subcarriers
are also modulated on the down link carrier. One of these subcarriers
is used to fransmit continuous telemeiry channel data while the other sub-
carrier contains time shared telemetry information. The down link carrier
operates at a nominal 1680 mHz and 35 milliwatts.

At the ground terminal this signal is received and auto-
iracked by the antenna system. The sum channel signal is fed to the Phase
Locked Receiver which is a double conversion, superheterodyne receiver
with intermediate frequencies of 50 mHz and 10 mHz. The receiver then
demodulates the input signal and provides baseband range information to
the Range Extractor and subcarrier telemeiry information to the Telemetry
Extractor. The slant range is obtained by measuring the time delay between
the transmission of the range code and reception of this same code signal.
The elapsed time is computed in a Timer Interval Counter which allows range
resolution measurements of 4.9 feet. The output range data is then digitally
recorded and transferred to the data processor. The telemetry information
is generated in the transponder through appropriate sensors and is received
at the ground station in the same manner as the range signal. However, in
the Telemetry Extractor the process is somewhat different in that the detector
is an FM discriminator in which the output amplitude is a measure of the
sensor condition. The analog output data is then applied to a digital
voltmeter which converts the analog information to a digital format and
transfers this data to the Data Processor. The Data Processor then accepts,
converts and stores tracking data, meteorological data and time data.obtained
during the flight of a radiosonde and produces a punched paper tape output
suitable for transmission over standard teletype lines.

In measuring slant range there are a number of methods
which will accomplish this purpose. The three outstanding systems are a
radar range measuring system, a PN (pseudo noise) ranging system and a
tone ranging system. All three systems have been used extensively in various
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phases of the space program. The advantage of the radar system is the
simplicity of the radiosonde since a passive corner reflector may be
substituted for the receiver in the radiosonde. The principal disadvantage
of such a system is the high transmit power required at the ground stations.
If radar systems are available for such use then it is desirable to take
advantage of this condition. However, where such is not the case a
range system using tones or PN is more desirable. For the AMSS system a
PN ranging system was selected. As opposed to the tone system an PN
ranging provides considerable jamming immunity, and for distant ranging,
exiremely low frequencies are not required. In reality the system selected
is a hybrid PN ranging system which utilizes a resolution range tone and

a short PN sequence for ambiguity resolution. Although the code used
here is much simpler than that used in many space programs, the operation
is much the same. For example, referring to Figure 5.3-33 a 64 kHz

sine wave is bi-phase modulated at an 8 kilobit rate. That is, after each
eight (8) cycles of the 64 kHz range tone a decision is made as to whether
to change the phase by 180° or leave the sinewave undisturbed. The
code format which makes such a decision is commonly a PN sequence.
That is, its spectrum resembles noise to the extent that the code length
will allow such a representation. Then by measuring the time delay between
the transmission and reception of the code sequence a measure of range
may be obtained. The AMSS code length is 31 bits which corresponds to
an unambiguous range of 580 kilometers and a further description of the
range exiraction process is described in the subsystem section.

The telemetry requirements are to provide four channels
of data with one channel being continuous and the other three time shared.
The maximum data rate on each time shared channel is one reading per
channel per second. The modulation technique is shown in Figure 5.3~34
where the reference channel width is three times that of any information
channel and the measurement data is contained in the amplitude of the
information channel relative to the reference channel. Requirements on
the subcarrier VCO?s are those of exireme linearity (better than 0.1%),
good stability (both long and short term) and the units must be economical
throw-away components. Such units are now practical and played a key
role in establishing this method as the telemetry format.
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5.3.6.2  Ground Equipment,

The block diagram of the proposed advanced sounding
system, as shown in Figure 3.5-32, consists of several major elements
described as follows:

1. VHF Transmitter.

The ground transmitter is a solid state unit operating
at a crystal controlled nominal frequency of 403 mHz. The output power
level varies between 5 milliwatts and 30 watts and is controlled by the
receiver AGC. Over this output level the transmitter must demonstrate
less than £ 10 nanoseconds group delay variation and for overall operat-
ing conditions, the group delay stability should be better than £ 20
nanoseconds. The transmitter is FM modulated with the 64 kHz ® PN
ranging data and the output is supplied to the ground antenna system.

2. Ground Antenna.

The ground antenna system consists of a transmit antenna
operation at 403 mHz and a receive antenna operating at 1680 mHz. The
transmit function associated with the ground antenna does not pose any
significant design problems as the required gain is only 3 db. This is
not true in the case of the receive function where there are d number of
conflicting requirements.

3. Avuto~Track Receiver.

The ground receiver is a phase lock tracking receiver
which is used to track the downlink RF carrier and to convert the range
and telemetry data to baseband. In addition to the above, the receiver
must also provide signals proportional to the antenna pointing error which
are in turn used to drive the antenna servo system. The receiver design to
perform these functions is a double conversion superheterodyne receiver
with 50 mHz and 10 mHz IF frequencies. The receiver will automatically
acquire the carrier signal and the acquisition will not be affected by the
presence of the telemeiry sidebands. Coherent AGC is used to maintain
the IF signal to the phase detector constant so that loop bandwidth is not
affected by signal level.
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4. Telemetry Extractor.

The purpose of the telemetry extractor is to develop out-
put signals which are proportional to the sensor resistance values in the
radiosonde. A block diagram of such a circuit is shown in Figure 5.3-35.

The baseband input consists of two subcarriers which have
been frequency modulated with the telemetry data. The extraction system
consists basically of a low frequency FM receiver which detects the sub-
carrier and provides a multiplexed output signal (a cw signal in the case of
the continuous channel). This signal is applied to a phase locked loop
which serves to detect the bit sync of the multiplexed signal. This bit
sync drives logic circuitry to derive frame sync as well as gate signals to
properly decommutate the multiplexed input and derive correction signals
to calibrate the telemetry data.

The band pass filters have a bandwidth of 520 Hz (2 8L)
such that the signal~to-noise input into the discriminator will be above
threshold under all expected condition and the phase lock loop band-
width used for sync purposes is 2.0 Hz (2 8 L).

The telemetry exiractor is completely automatic and does
not require prior calibration of manual checks throughout a radiosonde
flight. The circuitry has been designed such that the digital circuits and
operational amplifiers are utilized wherever possible. In this way the
telemetry extractor is readily adapted to present day integrated circuits.

5. Range Extractor.

The purpose of the range exiractor is to develop an out-
>ut signal which is a measure of the slant range to the transponder. The
-ange exiractor will measure relative phase shifts between the transmitter
and received range signals with the total range being displayed as the
timer interval between a start and stop pulse. The ranging system
selected was a PN ranging system in which the Range Exiractor is shown
in Figure 5.3-36. The input signal is a 64 kHz sine wave which has been
bi-phase modulated with a 31 bit PN code. The bit rate is 8 kbits/sec.
Operation of the range exiractor is such that after acquisition the Word
Detector provides an output pulse at some pre-set code condition. This
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is then fed to a logic function which simply creates an output pulse at the
first 64 kHz zero crossing after reception of an input from the Word
Detector. This output is termed the stop pulse which terminates the count
in a time interval counter. Initiation of the counter is done by means

of the start pulse which is generated in an identical manner to the stop
pulse except the acquisition and tracking functions are not required. As
can be seen the demodulator consists of a code loop and a tone loop.
Operation of these two loops is as follows:

1.

2,

The ground tracking receiver locks to the
input RF carrier after which

The PN generator in the code loop is precessed
in time at a rate of about 10 PN bits per second.

When the PN sequence of the demodulator approaches
that in the modulator a coherent 64 kHz signal appears
at the input to the phase detector in the tone loop.
This is shown in the correlation function of Figure
5.3-37. When the tone loop locks to the 64 kHz
signal the lock indicator stops the PN precessing

and indicates lock.

The code loops which has a correlation function as
shown in Figure 5.3-38 will then drive itself so

as to null out the 64 kHz component. Thus when
the code loop has driven the PN generator to this
state the 64 kHz signal to the tone loop will be
maximum,

As can be seen, once the acquisition process has been
completed the operation of the system is identical to a tone ranging system
except that ambiguities have been resolved by means of a PN code instead
of the addition of tones. The tone loop bandwidth (28L) is 2 Hz and acqui-
sition time of the system is based on the code search time. Since the code
is precessed at a rate of 10 bits/sec. and the code length is 31 bits, the
maximum acquisition time is 3.1 seconds. Zero seiting of the range is
straight-forward. Coarse range is set in by merely establishing the word
detector input state which will allow resolution to within one bit. The
fine resolution is obtained by increasing or decreasing the delay in the

stop pulse output.
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6. Range Modulation Generator.

The purpose of the range modulation generator is to
generate the ranging signals which are furnished to the ground trans-
mitter and the range extractor. The ranging signal consists of a
64 kHz resolution tone and ambiguity tones of 8 kHz, 1 kHz and
250 kHz which are coherent with the resolution tone or else the PN
signal to resolve the ambiguities of the 64 kHz resolution tone.

7. Timinge.

The time is provided by a digital clock in the Time
Interval Counter and may be designed to furnish local or elapsed time
in digital form for use by the Range Modulation Generator. This time
data is also applied to the Data Processor for analysis and recording
purposes.

8. Data Processor and Monitor.

This contains all ground equipment controls for acquisition,
tracking, monitoring and recording the performance of the system. The
data processor provides a display of time, slant range, azimuth and eleva-
tion angles and telemetry. 1t also provides a punched paper tape on which
all pertinent data is recorded in teletype code format.

5.3.6.3 Radiosonde.

The radiosonde is designed to perform two functions. As
a transponder, it must receive the up-link range signals, demodulate them,
and refransmit them to enable the determination of slant range. Asa
telemetry transmitter, it must accept the outputs of the meteorological sensors,
condition them and transmit them along with calibration information to
the ground station.

It would be desirable to have a single fransponder design
for both balloon and rocket launch applications, but the comparatively
high packaging costs which are inherent in the rocket environment are an
unnecessary restriction on the balloon sonde and, therefore, in order to
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reduce per unit costs of the high volume balloon application, a less
rigorous mechanical design is used for the kalloon,

A block diagram of the radiosonde is shown in Figure
5.3-39 and a list of performance characteristics is shown in Table 5-20,
The transponder uses a narrow band FM superheterodyne receiver and a
phase modulated transmitter in which the received frequency modulated
ranging information is translated to the downlink transmitted signal.
The transponder signal levels, gains and bandwidths are based on the
use of an inexpensive quartz crystal in the transponder. This quartz
crystal, located in the transmitter voltage controlled oscillator, is
the source of the receiver local oscillator signal and the transmitter downlink
signal. The quartz crystal pays its way by permitting a reduction in the
downlink transmitter output power to only 35 milliwatts while operating
at slant ranges up to 300 kilometers. This power level allows a substantial
savings in battery cost, weight and packaging costs. As can be seen the
functional block diagram of the radiosonde does not present any startling
or new innovations and the real significance of the design is the develop-
ment of a radiosonde unit which will economically provide the required
outputs. Some of the more important features of the low cost design are:

1. Use of crystal oscillator as described above

2, Use of highly accurate and economical VCO's
for the telemetry subcariiers. See Figure
5.3-34.

3. Design of a transponder with low group delay
variations over the operating environment.

4. Use of transistorized front end to provide system
noise figures less than 7,5 db.,

5. Use of a stripline filter in the final X4 output
stage to improve reproducibility and eliminate
tuning controls.

6. Use of low cost switching gates to provide the
necessary channel isolation in an accurate
PAM telemetry system,

7. Use of foam packaging to provide a shock
resistant, thermally insulated, lightweight

design.

8. Design which will allow modular addition or
elimination of functions within the radiosonde.
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TABLE 5-20

AMSS RADIOSONDE CHARACTERISTICS

RECEIVER

Input Frequency

Type

Input Signal Level

Input Signal Level w/o Damage
Noise Figure

IF Bandwidth (2 8 )

Video Bandwidth (B 0)

TRANSMITTER

Output Frequency

Output Power

Local Oscillator Output
Subcarrier Deviation Linearity
Gate Switch Impedances

Gate Oscillator Frequency
Gate Oscillator Stability

GROUP DELAY VARIATION

For a 64 kHz Tone the Maximum
Group Delay Variation within
the Radiosonde over the Operat-
ing Temperature, Signal Level
and Time

WEIGHT

Electronics

Total Package including
Battery

Modulation Type
Deviation Linearity
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400-406 mHz
Superheterodyne FM Receiver
=96 to -56 DBM

-6 DBM

8 DB Maximum

470 kHz

125 kHz

1680 mHz Nominal

1660-1700 mHz Band

35 Milliwatts

0 DBM

0.1% of Best Straight Line

On -~ Less than 500 ohms

Off - Greater than 500 megohms
12 Hz

* 10%

T 270 Nanoseconds

Less than 2 Ibs.

Less than 4 lbs.
PM
I 20% of Best Straight Time




TABLE 5-20 AMSS RADIOSONDE CHARACTERISTICS - continued -~

FREQUENCY STABILITY

Short Term
Long Term (8 Hours)

TELEMETRY

Channels

Frame Rate

Subcarrier Frequencies
Continuous Channel
Multiplexed Channel

Subcarrier Deviation

LIFE

Operating
Storage

OPERATING ENVIRONMENT

Temperature

Humidity

Altitude A
Shock (Rocket Launch)

Acceleration
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1 Part in 107
6 Parts in 109

1 Continuous and 3 Time Shared

One (1) per second

10.5 kHz
7.35kHz
1 125 Hz Maximum

4 Hours
1 Year

-70° C to +70° C
To 100% with Condensation
To 200 Kilometers
100 G's of 11 Milliseconds

Duration in each Major Axis
200 G's



6.

ROCKET VEHICLES

6.1 General.

Of the various kinds of launch vehicles and modes of propulsion,
so far the only type which has proven to be practical for routine meteoro-
logical soundings is the solid-propellant sounding rocket. Gun-launched
projectiles have successfully carried chemical trail and chaff payloads to
the higher altitudes, but their payload diameter and acceleration loads
have resiricted their use to these payloads. Also the overall cost of the
gun-launched projectile firings appears not to be competitive with the
booster dart rocket vehicles. Gun-launched telemetry systems have not
been used for meteorological applications, and in fact, their feasibility
in general has not been proven. Other methods of propulsion such as
liquid-propellant rockets, hybrid solids, ramjets and ducted rockets
appear to be too costly and complex without any significant advantage
over the solid-propellant rockets.

The solid-propellant sounding rockets for meteorological applica-
tions can be categorized as either single stage, booster dart or two stage
vehicles. Each of these types has its own advantages and disadvantages.
A selection among the various vehicle types for a particular mission can
only be made after the sensor instrumentation, telemetry and measurement
altitude region have been determined.

For the larger sounding rockets which carry all kinds of large and
heavy scientific equipment payloads, some using agencies rate the vehicles
on a cost and performance index, such as vehicle cost per pound of net
payload per mile of altitude. Some have tried to apply such an index to
the meteorological rockets, where it would have no significance at all.
When considering a meteorological rocket system, the important parameters
are the meteorological measurements to be made, their range of altitude
and their cost. Thus, the first consideration should be selection of the
sensor, its accuracy and the altitude range of the measurements. Next,
one must decide upon the telemetry instrumentation to be used and whether
or not to employ a rocketsonde decelerator. Only after the payload and
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desired altitude range have been determined, can a reasonable choice

of vehicle be made. The efficiency of the vehicle in carrying arbitrary
pounds of weight to arbitrary altitudes is not important. The important
factor is the ability of the vehicle to carry the required payload fo the
required altitude at the minimum cost. In addition, there are a number
of secondary factors in the choice of a vehicle for the meteorological
rocket application. A listing of factors which might be considered in
the choice of a rocket vehicle for a typical meteorological rocket system
is as follows:

1. Performance.
The vehicle must be able to carry the required
measurement payload to the required altitude or

it is worthless for the application.

2, Cost.

Since meteorological rockets are used for routine
soundings, cost is perhaps the most important factor.

3. Wind Sensitivity and Dispersion.

Since meteorological rockets are used on an
operational basis, essentially all over the world,
they must be capable of being launched under the
most severe wind conditions. Wind sensitivity and
the resulting impact dispersion must be kept to a
reasonable minimum so that launches will not have
to be cancelled due to weather conditions. Dis=-
persion factors other than wind sensitivity are about
the same for the various rocket designs, and the
resulting impact dispersions (minus wind effects) are
primarily a function of apogee altitude.

4. Reliability.
Reliability is a term often used to rate potential
vehicles, but is meaningless without a great deal of

flight data. What designer does not design for 100%
reliability? For vehicles which have not been

- 229 -



thoroughly flight-tested, estimates of reliability

are fictions. Many people like to assign a higher
reliability to single~stage vehicles than to two=

stage vehicles on a statistical basis, yet there are
technical factors, such as aerodynamic heating,
dynamic pressure and pitch-roll resonance problems,
which may more severely affect the single=-stage
vehicle, There have been many two-stage vehicles
which have flown more reliably in a two-stage con-
figuration, i.e., Nike-Cajun, Nike~Apache,
Nike-Hydac, Nike-Tomahawk. Even with a great
deal of flight testing and operational usage, reliability
can be a variable parameter. [t took the Arcas system
about four years and three~thousand flights to achieve
a 920% reliability. Then after two years of continued
success, the reliability fell to a farily low level.
Reliability is difficult, or impossible, to assess with
sufficient accuracy for a new design and has been
quite variable for the designs in use.

Operational Capability.

A meteorological rocket should be capable of being
handled and launched by a crew of two people with-
out the necessity for elaborate handling equipment.

The system should be relatively simple to operate

under adverse weather conditions, for world-wide
launchings may be required for remote sites by relative-
ly inexperienced personnel. Conditioning temperature
limits should be as wide as possible for compatibility
with exireme geographic regions from the tropics to

the Arctic.

Flight Characteristics.

Flight characteristics such as a aerodynamic heating
vibration, acceleration, attitude stability and roll

rate have occasionally been used to rate vehicles.
However, if the intended payload will adequately
function under the given level of each of these factors,
what further consideration is required?
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Safety Characteristics.

Most of the solid propellants used in current motors
(except double base propellants) are quite safe to
handle and ship so there is little choice among them.
Payload separation device initiators are perhaps a
greater safety hazard, depending upon their design.

Telemeiry and Tracking Potential.

Rocketborne telemeiry instrumentation is considered

as part of the payload for meteorological rockets and,
therefore, is included in ltem 1, However, if track-
ing telemetry is employed, a fast moving vehicle may
be more difficult to acquire and track than a slow one.
This is also true for radar tracking and here a small
vehicle may be more difficult to radar track than a
large one. These factors should be considered in
evaluating a new design.

Versatility.

Vehicle or rocket motor versatility has occasionally

been used as a rating factor for meteorological rockets

in the past. Thus, people have sought a rocket which
would perform for a 100 km requirement as well as a

60 km requirement or for a temperature measurement

and as well as an ozone measurement. In many cases
this versatility criteria is self-defeating from an
economic standpoint because it implies that the vehicle
system or the rocket motor is overdesigned for one of

the mission requirements. Generally this is the require~
ment for the greater number of flights. For instance, an
Arcas-type vehicle might be chosen because it is capable
of carrying a fairly bulky ozonesonde instrument and can
also be used for routine temperature and wind measure-
ments. However, the requirements for wind and tempera-
ture measurements might be for three thousand flights per

- 231 -



year. The Arcas-type vehicle might cost three times

as much as a dart vehicle which can only carry the

wind and temperature measuring payloads. The obvious
economic choice would be to use the larger more costly
rocket for the one hundred ozone flights and the smaller
lower cost rocket for the three-thousand wind and
temperature flights. The same argument holds for altitude
versatility consideration. A much greater quantity of

60 km flights are required than 100 km flights. Therefore,
why pay a great deal more for the 60 km data by using
the 100 km vehicle to obtain it, when the data could be
obtained with a smaller lower cost vehicle?

Before a vehicle can be chosen for a meteorological rocket system
application, the payload requirements of weight, diameter and length must
be determined. Also, payload interfacing requirements, such as the need
for telemetry antennas, should be studied.

A fairly wide variety of sounding rocket vehicles are currently avail-
able for the meteorological rocket applications. In fact, additional vehicles
are being developed each year. The adaptation of these vehicles, or at
least the design concepts, to a given payload - altifude requirement can
now be a straight-forward engineering development. The development of
frangible, consumable or destructable vehicles to eliminate or reduce the
falling mass hazard will at the current fime require a state-of-the-art
advancement.
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6.2 Historical Review.

Over the past eight years there have been many studies and attempts
to produce a meteorological rocket which could be used for routine soundings
to 65 km altitudes. A review of the meteorological rocket vehicle develop-
ment attempts is presented in Table 6-1. It is interesting fo note that only
the Arcas and Loki-type systems are currently being used for routine sound-
ings to 65 km,

The Loki fype vehicles employ a high—thrust short-duration booster
rocket with a non-propulsive dart payload stage. These vehicles offer con-
siderable advantage in operational simplicity, low wind sensitivity and
dispersion and low production cost. A disadvantage, however, has been a
resiriction for some instrumented payloads because of the relatively high
boost accelerations and limited payload diameter and volume.

The Arcas vehicle was designed to accommodate a relatively large
payload diameter, weight and volume in a low acceleration environment.
However, because of its long burning time, the Arcas has proven to be
quite wind-sensitive. Wind-sensitivity and dispersion in combination with
a relatively high cost for Arcas have been major disadvantages for its use
in routine operations.

The past several years have seen a number of attempis to develop
more suitable meteorological vehicles, but to date, none have yielded
operational systems. The Army Ballistic Research Laboratory and the
Canadian Armament Research and Development Establishment have experi-
mented with atmospheric probes launched from 5-inch, 7-inch and 16~-inch
guns. The acceleration of 16,000 g and upwards associated with this
technique make difficult their use with state-of-the-art type meteorological
instruments - especially the sensors. Two Navy sponsored programs were
directed toward development of single~stage vehicles with substantial pay-
load capacity which would be less wind-sensitive and less expensive than
the Arcas. Both used relatively long burning time (9 to 12 seconds) internal
burning solid-propellant grains in an attempt to compromise between high
accelerations and low=launching velocity. One of these vehicles, the
Aeolus, has severe reliability problems and was canceled. The Raven
proved to be unstable with payloads of less than 20 pounds, This vehicle
will reach only about 160,000 feet from sea level with this minimum pay-
load weight. Both of these vehicles appear to be a move in the proper
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direction, but it seems that the developers underestimated the aerodynamic
design requirements. The Atmos is a third Arcas-type vehicle which has
proved to be onreliable. Two other efforts, the AG=32 ramjet and the
Stratos solid-propellant steam-powered system, both directed foward «
low-cost vehicle have not proven practicals

The British, Canadians, Germans and French have all been active
in the meteorological rocket area, but the only operating vehicle designed
for the 65 kilometer range to come from these efforts to date is the British
Skua. This Arcas-type vehicle is slightly larger in diameter and length
than Arcas and uses a recoverable booster to increase launching velocity.
Cost data is not available to us, but it appears to be a very expensive
system. The Japanese have developed an Arcas-type vehicle, the MT-135
which is about twice the size of Arcas and reaches the same altitude.

From a survey of current vehicle programs, it appears that efforts to
compromise between Arcas and booster—dart type vehicles have not mef with
significant success. In most instances, the developers appear to have under-
estimated the aerodynamic propulsion and structural design requirements for
these vehicles.

In 1965 NASA-LRC awarded a contract to North American Aviation,
Inc. to conduct a study to define a state-of-the-art rocket vehicle which is
suitable for synoptic meteorological soundings. The apogee altitude chosen
for this study was 65 km, and the various rocket vehicle design studied were
a single stage, a booster dart, a dual-thrust single stage, and a two sfage
configuration. All designs employed solid-propellant rocket motors. An
Arcas-type 4.5 inch diameter si ngle stage vehicle was found to be optimum
after consideration of a number of factors such as reliability, versatility
and cost. The burning time was reduced from the Arcas value of 29 seconds
to 19 seconds to reduce the wind sensitivity. However, the propellant grain
weight was even less than that of the Arcas and so was the total impulse even
though quite a highvalue of specific impulse (248.5 seconds) was used in the
calculations. The trajectory calculations appear to be quite optimistic in
view of the increased drag losses due to the reduction in burning time, and
the specific impulse value appears to be higher than obtainable with current
state-of ~the-art low cost rocket motors.

A major factor in the choice of the single~stage vehicle was versatitlity

in the payload-carrying capacity. Measurements of wind, temperature, press=
ure, density and ozone conceniration were cited as being desirable on a single
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flight. This led to the assumption that it would be desirable fo retain a
significant amount of instrument package installation flexibility in the
design of the payload compartment to incorporate future sensors. Models
of existing Arcas telemeiry packages, i.e., AN/DMQ-?, were also used
for payload size requirements. Aside from the problem of over~estimating
the performance of this vehicle, it now appears that the requirement for
versitility in payload volume is a false requirement for the routine meteoro-
logical rocket.

In 1965 the Atlantic Research Corporation completed a study for
USAF-CRL to investigate the optimum meteorological sounding rocket
configurations from among off-the-shelf rocket motors for missions to 100 km,
150 km and 200 km. Single stage, booster dart and two~stage vehicles
were synthesised from among sixty~five available solid-propellant rocket
motors to determine the optimum vehicles for the missions as defined below:

Mission Apogee
Weight Diameter Altitude
(Ibs) (in) (km)
A 15 2-5 100
B 15 2-5 150
C 10 4.5-6 200
D 20 6 200

Although 225 vehicle combinations were found which would meet
the specific performances, these systems were further evaluated by con-
sideration of the factors as follows:

Reliability

Payload Diameter Versatility
All-Wedather Launch Capability
Handling Requirements

Safety

Acceleration Loads
Aerodynamic Heating
Temperature Limitations

Cost
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The results of the study indicated that single stage vehicles are
not useful for light weight meteorological payloads such as specified for
the study. This is because fairly large motors must be used for the high
altitude performance and these large motors would require ballast in the
payload section for adequate stability. Oversize payloads or ballast
weight were not allowed under the ground rules of the study. These
restrictions have had a significant effect on the study results. Booster
dart vehicles did not rate high in the study because of the payload
diameter limitations imposed by the study and the value rating scheme
which was used. Although twenty-one booster dart vehicles qualified on
performance basis, they were severely down-rated on grounds of having
small available payload diameters, large motor sizes and handling. The
two-stage vehicles were scored as the first twenty desirable vehicles
for each of the four-performance classes. Thus, the study results would
indicate that for the meteorological rocket requirements above 100 km,
two-stage vehicles are probably the best overall choice. The proposed
best choices are tabulated in Table 6-2.

It is interesting to note that the Arcas appears as the second stage
for the first four vehicles of categories A and B, and for the first nine
vehicles of category C. Loki second stages rate almost equal to Arcas
for category A and appear to also be desireable for category B requirements.
The larger diameter requirement of category C dictates the use of the Hopi IV
in place of the Loki. Very few successful candidates were found for
category D (6~inch diameter minimum payload to 200 km) and even those
few had low value scores. These vehicles were all quite a bit large and
more expensive than the current concept of a meteorological rocket would
allow.

As with previous studies of optimum meteorological rockets, this
ARC study has suffered from too generalized payload requirements, rather
arbitrary ground-rules, and a quite subjective value judgement scoring
system. A meteorological rocket which is fo be used frequently should be
designed for the exact measurement instrumentation to obtain the required
data throughout the required altitude region at the lowest possible cost.
There is much foo great a difference between a two-inch and five-inch
diameter payload for them to be considered in the same category. The
study ground-rules of not permitting ballast or over-sized payloads (larger
diameter payload than the final stage rocket motor) are vnrealistic limita-
tions which arbitrarily restrict the number of possible vehicle combinations.
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TABLE 6-2

SUMMARY OF ARC ROCKET STUDY

CLASS

Payload 15 lbs. 15 Ibs.

P/L Dia. 2to 5in. 2to 5in.
Altitude 100 km M=3.5 at 100 (150) km
RANK ROCKETS SCORE ROCKETS SCORE
1 Judi-Arcas 83.9 Spar.Sust-Arcas 78.6
2 Hasp 1l - Arcas 81.8 Side 1-A Arcas 76.3
3 Falcon-M58-Arcas 81.4 Aeroj. Sled-Arcas 75.4
4 Zuni-Arcas 76.2 Mauler-Arcas 72.4
5 Judi-Judi 73.5 Spar {11-6B-Side 1-C 72.1
6 NPP Boost-Arcas 72.8 Falcon Gar li~Arcas 71.4
7 Judi-Hasp 72.4 Side 1-C~Side 1-C 69.0
8 Falcon-M58-Judi 72.4 Arcas Boost-Hopi IV 68.4
9 Hasp—Hasp 72.2 Cherokee-Side 1-C 67.9
10 Sup. Falcon=Arcas 71.8 Spar. Sust-Judi 66.8
1 Falcon M58-Hasp 71.2 Hopi H{1-Side. |-C 66.4
12 Hasp=-Judi 71.0 Aeron.Sled-Side 1-C 66.3
13 Spar. {11-6B Side 1-A 70.4 Spar.Sust-Hasp 66.3
14 Spar. Sus=Side 1-C 68.5 Side. 1A~Judi 66.0
15 Falcon M58-Side 1-C 68.2 Hopi 11=Side 1-C 65.7
16 Spar HI-6B-Zuni 67.2 Hopi IV~Side 1-C 65.4
17 Zuni-Judi 67.1 Side 1A-Hasp 65.1
18 Deacon-Side 1-A 66.7 Yuma 1 - Side 1-C 64,1
19 Hopi 1-Side 1-A Aero Aeroj. Sled=Judi 63.8
20 Falcon=Gar I1-SI-C 66.0 NPP Boost—-Hopi IV 63.0
25 Zuni-Side [-C 64,6 AeroB. Boost-Side 1-C  61.9
30 Judi-Hopi 1l 63.7 Deacon~Side 1-C 60.0
40 NOTS~Boost-Arcas 62,0 Upstart-Side 1A (Bo) 58.0
First

Dart #42 Hawk=-Dualt. 61.8 #62 Black Brant 10" 49.4
Sec.

Dart #48 Hopi IV 60.5 #67 Recruit 43.6
Third

Dart #58 Gar 9 58.0 #68 Lance 40.3
Last

Rated #104 Terrier-Arcas 40,2 #69 Terrier-Dart 34.7
Vehicle Boost Boost MK-12 Boost
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TABLE 6-2

SUMMARY OF ARC ROCKET STUDY - continued =

CLASS

Pay load 10 lbs. 20 lbs.

P/L Dia. 4.5 t0 6.0 in. 6.0 to 12in.
Altitude 200 km 200 km

RANK ROCKETS SCORE ROCKETS SCORE
1 Spar. Sust=Arcas 71.5 Javel. I-Viper 2B 51.4
2 Spar. [II-68-Arcas 70.9 Recruit-Viper 1B 48,8
3 Aeroj-Sled-Arcas 68,2 Yardbird-Kiva 1 48,2
4 Cherokee~Arcas 68.1 Genie MD-1-Kiva 1 47 .4
5 Mauler~Arcas 68.0 Hawk Dual-Deacon 47.0
6 Y uma 1-Arcas 66,9 Javel, [{1~Deacon 45.0
7 Hopi li-Arcas 66.8 Lacrosse-Kiva 1 4.7
8 Side, 1C-Arcas 65.5

9 Hopi 1-C Arcas 64.8

10 Spar. Sust.=Hopi IV 63.2

11 Aerob Boost~Arcas 62,2

12 Deacon~-Arcas 61.0

13 Falcon M58-Hopi IV 61.0

14 Mauler-Hopi IV 59.8

15 Genie MD~1-Arcas 59.5

16 Cherokee~Hopi Il 59.1

17 Mauler=Hopi I 58.2

18 Bullpup-Arcas 57.8

19 Lacrosse~Side 1IC 57.6

20 Apache=Side 1-C 57.4

25 Spar. Sust-Hopi 1l 59.7

30 Gar 9-Side 1-C 55.5

40 Bullpop=Hopi Il 48.6

First

Dart  #37 Tomahawk 406 50.2

Sec.

Dart  #43 Black Brant (17") 43.0

Last

Rated #45 Black/Brant (10") 31.8 #7 Lacrosse~Kiva 1 4.7
Vehicle (HVAR)
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Value judgements concerning the tradeoff of merit points for such factors

as aerodynamic heating, maximum dynamic pressure, propellant safety,
vehicle reliability and maximum acceleration are almost completely sub-
jective. These factors may not be at all pertinent depending in many cases
upon the specific payload. In general, vehicle reliability estimates are
worthless for vehicles yet to be developed. If a particular vehicle and pay-
load can withstand a certain dynamic pressure and aerodynamic heating,
there is no value advantage in reducing these factors. FEither the system
performs or it does not. The validity of the final results of this study can
be questioned on the basis for determining the relative importances among
the various rating factors.

In spite of the shortcomings of the study, there is presented a good
deal of detailed information which is quite useful for future planning of
rocket vehicles. Some of the performance data, however, are not very
accurate and should not be considered as valid without some further check-
ing. For instance, the Viper 2B-Dart (2.0 inch diameter) is shown as
achieving an apogee of only 350,000 feet, while subsequent flight tests
of this same vehicle resulted in apogees as high as 435,000 feet.

The Arcas has been the primary meteorological rocket network and
60 km support vehicle for the last six years. Although the systems reliability
started out at a relatively low level, it gradually improved over the years
to a level of about ninety percent. However, over the past year or so this
reliability level has suffered somewhat.

At the current time, it appears that the Arcas is being phased out
as the primary 60 km meteorological rocket infavor of the instrumented
Loki Dart vehicle. This Loki Dart system has been qualified and standard-
ized by the Air Force as the Meteorological Probe PWN-8B. The Loki
Dart system with a ram=air decelerator (Starute) and a 1680 mHz temperature
measuring payload (Datasonde currently is 42 percent of the Arcas-Arcasonde
cost and this figure has been obtained at fairly modest production rates.
Increased production requirements should reduce this cost ratio to approximately
one-third. An additional advantage of the Loki system is a reduction of the
wind sensitivity from a value of 1.20 nm/knot for the Arcas to a value of
0. 32 nm/knot for the dart.

Loki Dart vehicles have been used for years fo dispense chaff for
routine wind data. Current Loki Dart chaff systems are routinely dispensing
chaff to altitudes of 250,000 feet from sea level launch sites and 280,000
feet from WSMR. A high energy Loki motor was developed two years ago by
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Space Data for the Army to obtain chaff winds to 280,000 feet from sea
level sites. The Hopi Dart and Cajun Dart vehicles were developed for
NASA-MSFC to obtain winds to 90 km with chaff payloads from Cape
Kennedy in support of the Saturn. Just this year the Super Loki vehicle
has been developed fo obtain winds to 90 km with chaff payloads from
Cape Kennedy in support of the Saturn. The Super Loki vehicle has been
developed for NASA-MSFC to replace the Hopi Dart and Cajun Dart with
a lower cost system for the high altitude chaff winds requirement. An
instrumented dart for the Super Loki is currently being developed to obtain
winds and temperatures fo a higher altitude than the capability of the

current PWN-8B system.

Instrumented payloads for the higher altitude measurements have
historically been flown with the larger geophysical rockets such as the
Aerobee-150, the Nike Cajun, the Nike Apac he and others. A significant
break-through a few years ago was the development of the Sparrow Arcas for
soundings to about 475,000 feet with moderate size (4.5~inch diameter)
and moderate weight (16-lb) payloads. Other versions of the boosted Arcas
have been developed for altitudes between 200,000 feet and 475,000 feet.

The Viper Dart has just recently been developed for carrying the
Robin passive inflatable sphere to an altitude of 125 km. Further develop-
ment efforts are currently being expended to increase the Viper Dart altitude
to 140 km. The dart has a 2-inch diameter, weighs 29.5 pounds and has a
payload volume of 46 cubic inches.
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6.3  Current Vehicle Systems.

6.3.1 General.

Although there have been a number of attempts to develop optimized
meteorological rockets over the past few years, the only ones currently being
used on a routine, synoptic basis are the Arcas and the Loki Dart. Since
reliable instrumentation has been developed for the Loki vehicle, it is
currently replacing the more expensive and wind—sensitive Arcas for the
majority of the Meteorological Rocket Network and routine support launch-
ings. Thus, the Arcas is gradually being relegated to the less frequent
research soundings where the versitility in payload diameter is required.
Until a GMD-2 transponder-type telemetry instrument is developed for
the Loki system, however, the Arcas will still be used routinely with
the AN/DMQ-9 transponder sonde at the few locations requiring a GMD-2
track. For routine measurements above 65 km the Super Loki and the Viper
Dart are currently being employed to measure chaff winds and falling sphere
densities and winds respectively. The various boosted Arcas vehicles
available have had limited use, generally for special research payloads.
The various Nike boosted vehicles have been used for large research pay-
loads, and are too large and costly to be considered seriously for routine
meteorological sounds. The two foreign meteorological rockets, Skua 1,
(British) and MT~135 (Japanese), are basically Arcas—type vehicles which
appear to have no particular advantage over the Arcas. A summary of the
current meteorological rocket vehicles is presented in Figure 6.3~1 and
Table 6-3.

Although the monthly Data Report on Meteorological Rocket Network
Firings lists twenty-six meteorological rocket types, most of these vehicles
are either obsolete or redundant. All of the Loki type vehicles of Table 6~4
are essentially the same, and the only operational version of the instrumented
Loki is the PWN-8B. The obsolete vehicles from the Data Report are listed
in Table 6-5. More detailed information on the currently active vehicles are
presented in the sections which follow.
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TABLE 6-4

LOKI DART VEHICLES

JuDI

LOKI |

ROCKSONDE 200 (Obsolete)
HASP |

HASP i

HASP It

TALLY HI (Obsolete)

LOKI DART

PWN-8B
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TABLE 6-5

OBSOLETE VEHICLES

LOKI |

JuDl
ROCKSONDE 200
HASP |

METROC
BOOSTED METROC
DEACON ARROW
ARCHER

RAVEN

HOPI DART
TALLY HI

HASP 1lI
SIROCCO

CAJUN
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6.3.2 Arcas.

Such a great deal of information has been published concerning
the Arcas, that to include a detailed description here would be painfully
redundant. Therefore, only a brief description will be given.

The Arcas sounding rocket is an unguided vehicle with a diameter
of 4.5 inches and is designed to carry payloads of 12 pounds or less to
heights in excess of 200,000 feet when launched from sea level. Four
fixed fins stabilize the vehicle during flight. A pyrotechnic separation
device is included to separate the payload from the missile at peak
altitude. The rocket is designed for launching from a specifically
designed closed-breech launcher to reduce its inherent wind=sensitivity
to a somewhat tolerable level.

A cross—section of the Arcas rocket vehicle is shown in Figure 6.3-2.
The rocket is 4.5 inches in diameter, 90.9 inches long and weighs 77 pounds
when provided with a nominal 12-pound payload. The high performance
rocket motor is powered by an end-burning solid-propellant grain, generating
a 336-pound thrust for approximately 30 seconds. The application of long=
burning propellants is advantageous because acceleration is experienced
over a long period of time, peak g-loading is minimized and more efficient
conversion of thrust to vehicle velocity is realized based on the greater
percentage of thrust time in a more rarefield region of the atmosphere.

The Arcas has a cylindrical parachute container threaded to the
head cap of the motor case. The parachute is packaged in to this section
and the forward head closure of the parachute compartment is secured with
three shear pins. The barrel section of the plastic nose cone slides inside
the forward end of the parachute container. The active payload is secured
to a metal instrumentation base plate which is secured, in turn, to a center
stud bolt by means of a lock-nut. The nose cone may be secured fo the
instrumentation base plate by set screws, or, if nose cone jettison is desired,
by six steel balls which fall away upon expulsion of the parachute-payload
combination. The steel-ball separation device permits exposure of sensing
elements to the atmosphere during descent of the payload.
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A gas-generator separation device mounted in the head cap of the
rocket motor functions at apogee, separating the parachute and instrumenta-
tion section from the rocket motor. This separation device incorporates a
pyrotechnic delay column which is activated at termination of the propellant
burn phase, providing a 130-second function period from rocket lift-off
to payload separation. The gas-generator, acting on the after closure of
the parachute container, expels the parachute, instrumentation and nose
cone from the burned-out motor by piston-type action.

The Arcas nose cone (Figure 6.3-3) provides a volume of 140 cubic
inches for instrumentation. An additional 150 cubic inches of volume can
be utilized if the parachute is not required, or, for every large payloads,
as many as 127 cubic inches can be obtained by extending the parachute
cylinder or cylindrical section of the nose cone. [n the nominal active
payload configuration section, the nose cone, instrumentation, base plate,
parachute container, and associated components weigh four pounds. The
parachute weighs an additional 2.3 pounds, making the gross component
weight 6.3 pounds and permitting up to 5.7 pounds active payload weight
for the nominal configuration. By use of an extended payload section and
parachute container, payloads up to 20 pounds can be accommodated.

The Arcas Robin balloon is a variation of the basic Arcas rocket
system design. The payload consists of a 1-meter~diameter mylar balloon
bearing an internal corner reflector for passive radar fracking purposes.

The balloon weighs 0.3 pound and is inflated by chemical action upon
expulsion from the rocket at apogee. In the Robin configuration, the para-
chute container is eliminated, and the nose cone is attached directly to the
motor case by means of a threaded adaptor sleeve. The Robin rocket vehicle
is 80,8 inches long and the total weight is 72.5 pounds, including ballast
required to maintain vehicle stability brought about by the extremely light
balloon payload. Separation of the Robin balloon is accomplished by means
of the standard Arcas separation device.

Major Arcas parameters are listed in Table 6-6.

The rocket motor (Figure 6.3-4) contains an end-burning charge of
plastisol type solid propellant. The motor case consists of a one-piece steel
outer casing with an insulator liner. The nozzle structure is a tapered
graphite insert supported by the tapered after-end of the case. A steel
retaining ring, welded to the head end of the case, is used to secure the
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TABLE 6-6

ARCAS
ROCKET SYSTEM DIM ENSIONS

PARAMETER

Length (in. )

Overall 90.9

Rocket motor 60.8

Parachute container 12.0

Nose cone 18.1
Diameter ( in. ) 4.5
Fin span (in. ) 13.0
Fin area ( 4 fins ) (in. 2) 94
Interval volume ( in. 3)

Parachute container 140

Nose cone 170

Nominal weight (lbs.)

Total vehicle 70.5
Motor burnout 29.5
Nose cone 1.5
Parachute container (loaded) 4.0
Rocket motor 65.0

* Does not include instrument package and instrument base, which total 4 to
6.5 Ibs. depending on the type of rocketsonde payload.
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motor head closure and also provided a threaded joint for attachment

of the payload sections. The motor is delivered completely assembled

and cannot be disassembled in the field, Nominal performance character-
istics of the motor are shown in Table 6-7.

A pyrotechnic device is used for payload separation and is an
infegral part of the motor head closure. This device contains a delay
column of pyrotechnic material that burns for 100 seconds. It is ignited
as combustion of the propellant nears completion after approximately 28
seconds. This delay column in turn ignites a gas-generating charge, which
separates the payload from the expended rocket motor at a relative velocity
of 50 feet per second with a maximum acceleration of less than 50 g's.

The igniter is packaged separately for shipment and is installed
through the nozzle of the rocket just prior to firing. It employs an electric-
ally activated squib and five grams of pyrotechnic booster compound. The
parachute container assembly, including parachute, is provided as a sealed |
unit and cannot be disassembled in the field. It is coupled to the motor
case by connecting a lanyard to an attachment hole in the case head
closure.

The major components of the Arcas are shown in Figure 6.3-3.

A closed breech launcher is normally used for launching the Arcas
rocket. The major components of the launcher as shown in Figure 6.3-6
are a 20-foot tube to guide the vehicle during initial acceleration, a free=
volume cylinder to retain the exhaust gases, and a base assembly constructed
to permit azimuth and elevation angle seitings. Access to the launcher for
loading is provided by a hinged breech plate on the bottom of the free-
volume cylinder. The breech plate is equipped with a connector for the
firing line and the igniter leads.

In operation as indicated in Figure 6.3-7 the free-volume cylinder
entraps the exhaust gases of the burning rocket motor. These gases exert
pressure on a piston attached to the nozzle end of the rocket vehicle,
accelerating the vehicle up the launching tube. The rocket is centered and

supported in the tube during launching by four plastic spacers that fall away
from the rocket along with the piston as the rocket leaves the tube.
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TABLE 6+~7
ARCAS ROCKET MOTOR PERFORMANCE CHARACTERISTICS

CHARACTERISTICS TEMPERATURE (° F) NORMAL VALUE
Average thrust ( Ibs) - 10 268
+ 70 336
+110 385
Burning time ( sec) - 10 35.4
+ 70 29.0
+110 24.8
Average pressure ( psi ) - 10 805
+ 70 1020
+110 1150
TOTAL IMPULSE (Ib - sec) ——— 9089
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FIGURE 6,3-6 MAJOR COMPONENTS OF THE CLOSED-BREECH ARCAS LAUNCHER
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FIGURE 6.3-7 Principle of Operation of the Arcas Closed-Breech Launcher
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If desired, an auxiliary gas generator which is incorporated into
the free—volume cylinder may be used. This will increase the launching
velocity over that obtainable with the basic launching system. The gas
generator contains a propellant charge that generates additional gas
pressure into the cylinder. The generator is fired mechanically by gas
pressure from the launcher fransmitted through a high temperature, high
pressure hose. The U. S. Navy at PMR has recently developed a com-
pressed air system fo be used in conjunction with the Arcas launcher to
accomplish the same objective.

Utilization of the gas generator technique results in an increase
of the Arcas rocket launch velocity. In the case of the rocket-sonde
system the increase is from 150 feet per second to 230 feet per second.
This has the effect of reducing the Arcas wind sensitivity slightly.

Typical Arcas flight performance values are shown in Table 6-8
for 88° and 84° launch elevations for both the Robin and Arcasonde
configurations, with and without the launcher gas generator.

6.3.3 Loki.

The Loki meteorological rocket sounding system is designed to measure
temperature and wind velocity as functions of altitude to a height of 65 km.
A sketch of the Loki rocket system is shown in Figure 6.3-8.

The rocket is launched from a helical-railed launcher. The vehicle,
consisting of a rocket motor and payload-bearing dart, is propelled to
a motor burnout hight of 5,000 feet where the dart is separated from the
rocket motor. The dart then follows a ballistic trajectory to a peak height
where the payload is expelled from the dart. The payload consisting of
the temperature sensing device and small radio-frequency transmitter then
descends on a radar—reflective parachute or other decelerator.

Other payloads commonly employed in the Loki system are radar-
reflective chaff dipoles and radar-reflective parachutes for the determination
of wind velocity while radar-reflective inflatable spheres have been utilized
for the defermination of stratospheric air density and winds.

The rocket vehicle is comprised of two stages, the booster motor and

the unpowered dart which contains the payload. The Loki motor is an internal-
burning type which provides an average thrust of 890 kilograms for a period of
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TABLE 6-8

FLIGHT PERFORMANCE CHARACTERISTICS OF THE ARCAS SYSTEMS

FOR 88° AND 84° LAUNCH ANGLES

STANDARD LAUNCH ROCKETSONDE (12 Ibs)

ROBIN (8 Ibs)

88° QE 84° QE 88° QE 84° QE

Max. altitude (ft) 197,000 181,000 232,000 215,000
Time to max. altitude (sec) 124 120 135 130
Max velocity (fps) 3, 440 3,420 3,760 3,740
Altitude at burnout (ft) 51,000 50,000 56,000 54,000
Launch velocity (fps) 150 150 160 160
Acceleration at launch (g) 33 33 36 36
GAS GENERATOR LAUNCH ROCKETSONDE (12 lbs) ROBIN (8 lbs)

88° QE  84° QE 88° QE B84°QE
Max. altitude (ft) 210,000 198,000 247,000 232,000
Time to max. altitude (sec) 128 125 139 134
Max. velocity (fps) 3520 3510 3860 3830
Altitude at burnout (ft) 53,000 52,000 57,000 55,000
Launch velocity (fps) 230 230 250 250
Acceleration at launch (g) 90 90 94 94
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2 seconds thus producing a rocket velocity of 1500 meters/sec at an
altitude of 1500 meters. At this point the motor is separated from

the dart which then follows a ballistic trajectory to an altitude of 65
km. At this altitude, and approximately 110 seconds after launch time,
the payload is ejected by an explosive charge, the ejection fime being
determined by means of a pyro-delay fuze which is activated at the time
of rocket launch.

The dimensions of the Loki rocket system are shown in Figure 6.3-9
while Table 6-9 lists the principal physical characteristics of the rocket
and Figure 6.3-10 shows a cross-sectional view of the various components
which comprise the dart payload for the determination of temperature and
wind velocity in the stratosphere.

The balloon dart carries an inflatable plastic balloon as the sensing
device. The balloon contains a corner-reflector radar target and is ejected
from the dart at an altitude of 65 km to form a sphere one meter in diamefer.
The sphere is tracked by radar as it descends through the atmosphere. From
the radar determination of balloon position as a function of time, air density
and wind velocity are determined as functions of altitude. The data
reduction techniques utilized for the determination of these parameters are
contained in the bibliography of this manual.

The chaff dart carries radar-reflective dipoles as the sensing elements.
The dipoles are ejected from the chart in the neighborhood of 65 km. The
tracking of the chaff cloud by a ground-based radar system serves to determine
the position of the chaff at successive time intervals. From the radar deter-
mination of the cloud position as a function of fime, stratospheric wind
velocity is determined as a function of altitude.

Two types of chaff are commonly utilized. Copper chaff 1.27 x 102 ¢m
in diameter is used for the determination of wind velocity at altitudes between
65 and 15 km. At 15 km the copper chaff fails to provide an adequate target
for the tracking radar because of the excessive dispersion of the chaff dipoles
forming the chaff cloud. Nylon chaff 8.8 x 10~3cm in diameter has been used
to determine wind velocities at altitudes from 85 to 60 km.

The Meteorological Probe PWN=-8B (Insirumented Loki Dart) has been
developed, qualified and successfully flight tested for final standardization
by the U. S. Air Force to make available a low cost meteorological sound-
ing rocket system for operational use. The major components of the probe
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TABLE 6~9

PRINCIPAL CHARACTERISTICS OF THE LOK| SOUNDING ROCKET

CHARACTERISTICS NUMBERICAL VALUE

Length (meters)

Overall 2.62
Rocket motor 1.53
Dart (Temperature = wind) 1.09

Diameter (cm)

Rocket motor 7.60
Dart (Temperature=Wind) 3.80

Fin Span (cm)

Rocket motor 13.00
Dart 7.60

2

Fin Area (cm

Rocket motor
Dart 54.4

Nominal Weight (kg)

Total vehicle (launch) . 15.0
Motor case 2.6
Dart 4.1
Propellant 8.3
Total vehicle (burnout) 6.7
Average thrust (kg) 890
Burning time (sec) 1.8
Total impulse (kg=sec) 1550
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system include a small solid-propellant rocket motor, a non-propulsive
dart which contains the payload, a launcher and a ground-based test
set. The system has been designed for launches at remote sites as well
as at established missile ranges. Atmospheric temperature and wind data
are obtained with this probe to an altitude of 200,000 feet.

The major components of the Meteorological Probe PWN-88 con-
sist of the following:

Rocket Motor SR 71-AD-1 Rocket Motor
Igniter Assembly
Ogive, Instrumentation Group Dart Body
A/A 37U-26 Dart Tail

Launcher, Meteorological Probe  Launcher
LAU=-66/A

Test Set, Ogive Insirumentation  Test Set
Group TTU-273/E

Each of these components has undergone environmental and performance
testing, and each component was used in the qualification flight tests.
All of these components have been designed to withstand both storage
and operation temperature exiremes from ~40° F to + 140° F, The rocket
motor nas been qualified to MIL-R-MIL-STD-810. The test set has been
designed and qualified in accordance with MIL-21200, Class 2 and
MIL-STD~108.

The design of the vehicle system incorporates an improved Loki
rocket motor and a 1.437 inch diameter dart. The dart design is similar
to that which was developed under the CRL Confract No. AF 19(628)-4164
for a Loki Instrumented Dart System. Figure 6.3=11 presents a photograph
of the vehicle system. Figure 6.3-12 is a dimensioned sketch of the
vehicle configuration,

The dart system design is indicated in Figure 6.3-13. The tail

assembly consists of the booster coupling receiver, tail fins, firing line
umbilical receptors, pyrotechnic time delay and expulsion charge. The
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FIGURE 6.3-11 PHOTO OF INSTRUMENTED DART SYSTEM
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parachute-sonde payload resides inside two sets of split staves which
transmit the ejection piston load directly fo the nose cone or ogive
during expulsion. The staves are also used the sliding the payload

into the dart body during assembly and out from the dart body during
ejection. Both the dart body and the staves contain a payload
umbilical hole for external power and calibration. The staves are
lined with an asbestos paper to reduce the heat transfer from the

dart body into the payload. The staves are split to permit deployment
of the parachute and instrument with minimum inferference. The nose
cone or ogive is shear=pinned tfo the dart body so that during expulsion,
the ogive separates from the dart, leaving the front end of the dart
body open for payload ejection. The ogive has a drilled hole down the
center for the sonde antenna to make contact. The ogive is isolated
from the dart body by means of an electrical insulator. Thus, the ogive
acts as an active antenna while the dart body forms the ground plane.

The operation sequence of the proposed booster~dart vehicle
system is as follows:

I. Rocket motor and dart time delay ignition.

2. Initial vehicle motion disengages dart umbilicals.

3. Vehicle travels up through helical rail launcher
which imparts spin or roll to the vehicle.

4. Vehicle exits the launcher at 180 ft./sec. with a

spin rate of 13 rps. Spin rate at launch is necessary
to reduce effects of thrust misalignment on vehicle

dispersion.

5. Booster rocket burns out at 1.91 sec. at 4,750 ft.
and 5,120 ft./sec. Spin rate has decreased to
10 rps.

6. Dart separates, spins up to 50 rps and coasts to
apogee.

7. Pyrotechnic delay train ignites expulsion charge.

8. Ejection piston transmits load through packaging
staves to ogive where retaining pins are sheared.

9. Ejection piston expels payload, staves and ogive

as indicated in Figure 6.3-14,
The rocket motor design is specified by USAF Drawing Number

67D57300 and is an improved version of the Loki motor. The total
impulse of the present design is increased by 316 pounds—seconds by

- 270 -




NOSE ASSEMBLY

ABLATIVE COATING

lNSTRUMENT,METEOROLOG[CAL\\\

STAVES, INSTRUMENT

STAVES, PARACHUTE

PISTON

PARACHUTE, METEOROLOGICAL,
A/B28U-5

DART BODY

ABLATIVE COATING

FIGURE 6.3-14 PAYLOAD EXPULSION SKETCH

- 271 -




increasing the specific impulse and weight of propellant. This has been
done to assure that the minimum apogee altitude specification at an
effective launch angle of 80° of 200,000 feet will be satisfied.

A summary of the major design characteristics of the SR 71-AD-1
rocket motor is presented in Table 6~10 along with similar data for the
Loki I and HASP type motors. The differences in hardware design between
the SR 71-AD~-1 and these motors is summarized in Table 6-11. These
improvements in the design and performance of the rocket motor have
significantly improved both altitude performance and flight reliability
of the system. The rocket motor is specified by MIL-R-83064 (USAF)
Model Specification, Rocket Motor SR 71-AD-1.

The total impulse of the SR 71-AD~1 rocket motor is 4076 pound-
seconds, which is significantly higher than the Loki Il and HASP Mark 32
Mod O motor impulses of 3,760 pound=seconds. This has been accomplished
by increasing the propellant specific impulse from 223 seconds fo 231 seconds
and the propellant weight from 16.88 Ib to 18,25 Ib. The increase in
propellant weight is due to a high volumetric loading rather than the use
of a higher density propellant. The port volume of the SR 71-AD~1 motor
is reduced from the Mark 32 Mod O design, and the nose piece is not
loaded with propellant. The nozzle throat area is also increased to give
a higher thrust at a lower chamber pressure than the Mark 32 Mod O design.
The steel ring at the nozzle end of the Mark 32 Mod O is replaced with a
rubber boot to reduce the problem of motor wall=burn throughs at the
junction of the forward end of the nozzle and the motor wall.

A comparison of the ballistic performance between the SR 71-AD-1
motor and the Loki Il or HASP motors is presented in Table 6~12.,

Rocket Motor Hardware Design.

The SR 71-AD-1 rocket motor major hardware components consist
of the forward closure, the motor tube, the nozzle assembly, the fins, the
forward boot and the aft boot.
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TABLE 6-10

ROCKET MOTOR MAJOR DESIGN CHARACTERISTICS SUMMARY

Design Characteristics

Length (in)
Diameter (in)
Wall Thickness (in)

Weights:
Case (lb)
Nozzle (Ib)
Liner (Ib)
Propellant (1b)
Total (Ib)

Motor Mass Fraction
Burning Time (Sec.)
Action Time (Sec.)

Chamber Pressure:
Maximum (psi)
Average (psi)

Loki 11 & Mark 32

Total Impulse at Sea Level (lb.—sec) 4,076
Propellant Specific Impulse (sec) 231

Throat Area (in ©)

Expansion Ratio

Grain Port Diameter (Tapered) (in)

SR 71-AD-1 Mod 0 HASP Types

66.06 66.06

3.126 3,126
0.061 0.061
4.39 4.39
0.81 1.52
0.60 0.50
18.25 16.88
24,05 23,29
0.76 0.73
1.86 1.86
2.04 1.97
1,447 1,500
979 1,340
3,760
223

1.41 0.983
5.44 6.05

1.30-1.00 1.58-1.00
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TABLE 6-11

HARDWARE DESIGN
CHARACTERISTICS COMPARISON

Loki Il &

Hardware Design SR 71-AD-1 Mark 32 Mod 0
Motor Case Same Same
Nozzle Recessed 0.81 Ib. Not Recessed

"O" Ring Seal Steel Sleeve
Nozzle - Motor Case Rubber Boot Steel Sleeve
Junction Protector
Nose Piece Loading None Propellant
Forward End Seal Rubber Boot Rubber

TABLE 6-12

ROCKET MOTOR BALLISTIC PERFORMANCE COMPARISON NOMINAL
80° F CONDITIONS

Loki 1l & Mark 32

SR 71-AD-1 Mod 0 HASP Types
Total Impulse (lIb. sec) 4,076 3,760
Action Time (sec) 2,04 1.97
Maximum Thrust (Ib~ft) 2,902 2,380
Average Thrust (Ib-ft) 2,033 2,020
Specific Impulse (sec) 231 223
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LOKI LAUNCHER

General.

Loki type vehicles have been launched utilizing several different
types of launchers such as the standard helical-rail tube, zero~-length
launcher, a rail launcher with no spin and a five=inch gun launcher.

Of these techniques, the most successful has been the helical-rail tube
because of its inherent capabilities to induce the spin rate to the vehicle
prior to the time it is released for free flight. The helical-rail launch
tube was developed for the original Loki anti-aircraft dart system to
reduce dispersion for greater aiming accuracy. This launch technique
has been used for the Loki-Dart meteorological rockets for a number of
years up to the present time with excellent success in restricting dart
impacts to relatively small regions - a significant advantage of the Loki-
Dart system. The LAU-66/A launcher has been designed to a helical-
rail identical in function to the original Loki helical-rail launch tube.

Vehicle Dispersion Considerations.

During the original Loki | system development program at JPL,
firings were made using both spiral-rail launch tubes and straight rails.
Also, long (14 feet) and a short (7 feet) spiral—rail launch tubes were
compared. The results of a number of firings with each launch system are
summarized below:

Helical Straight Helical

Launcher Type Rails Rails Rails
Launcher Length (ft.) 14 14 7
Launch Velocity (ft/sec) 359 362 244
Launch Spin Rate (rps) 18.1 0 12,7
Average Wind Effect (mil/mph) 1.3 1.3 1.0
Dispersion w/wind (5 mph) 6.6 22,8 7.2
Dispersion w/wind (5 mph) 7.3 - 7.4

For a high-acceleration, high-velocity system such as the PWN-88B

~ 275 -



Probe vehicle the effect of wind at launch and during flight upon impact
dispersion is relatively insignificant. This fact leaves the vehicle airframe’
and, especially, thrust misalignment as the next major sources of impact
dispersion. The dispersion resulting from these misalignment factors can
be significantly reduced by imparting spin to the vehicle, before they can
alter the course of the rocket vehicle. A critical period for a vehicle
with no spin at launch is just as the vehicle leaves the constraints of the
launcher. The thrust misalignment vector operates immediately upon
launch fo turn the vehicle into a new heading without the benefits of any
appreciable aerodynamic restoring forces to resist the moment generated
by the thrust misalignment. Hence, a new heading is taken before the
vehicle has a chance to build up sufficient spin, by means of canted fins,
to vector out the misalignment effects.

Firings using the conventional helical-rails had less than one-third
of the dispersion experienced with the straight no-spin rail. 1t was con-
cluded by JPL that the initial spin imparted to the vehicle by the helical-
rail launchers strongly reduces the dispersion. The average wind effect
does not seem to be influenced significantly by either straight or spiral rail
designs or launcher length changes, at least from 7 feet to 14 feet. Dis-
persion does not seem to be particularly influenced by launcher rail length
for variations of the above magnitude.

Launcher Design.

General.

The LAU-66/A Launcher has been designed as a helical-rail launcher
of moderate length, i.e., 10 feet long, to maintain frajectory and impact
dispersion at a low value. Increasing launcher length beyond 10 feet does
not significantly reduce either the average wind effect or dispersion, but
makes a more cumbersome and costly launcher. Since the basic vehicle
dispersion for the probe system is so small, i.e., 7.0 mils, accuracy in
launcher settings, launcher rigidity and launcher straightness (lack of
bowing) become limiting factors in making possible a minimum trajectory
and impact dispersion. These factors, in addition to the practical aspects
of cost, mobility and environmental fidelity, have been the main design
goals for the LAU=66/A launcher.

Requirements.

As discussed above, it is necessary to provide a rigid structure fo
support the launch tube to limit the dispersion. In addition to providing
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the rigid structure for the launch tube, the other design goals for the
launcher has been:

1. Adjustable in elevation to T 1/4 degree.
2. Adjustable in azimuth to % 1/2 degree.
3. Allow the launch rails to be supported in such a

way that one man can easily elevate the rails into
the launch position or move the rails into the
horizontal position.

4, Provide elevation and azimuth locking mechanisms
which are easily locked and unlocked.
5. Provide a motor retainer stop which is easy to

actuate and will withstand the rocket blast of the
motor at launch.

6. Provide access for the umbilical connector to the
instrument.

7. Provide junction boxes for the firing lines.

8. The basic design shall be such that it can be

assembled in the field with two people without
auxiliary lifting equipment. This has been -
accomplished by using a component type construct-
ion and limiting the weight of each component to
not more than 240 pounds.

9. Azimuth and elevation indicators are an inherent
part of the launcher.

Description.

The Launcher, Meteorological Probe LAU-66/A (Figure 6.3-15)
consists of four major components: base, pedestal assembly, support assembly,
and the rail assembly. The launcher base supports the pedestal assembly,
which in turn supports the support assembly to which the rail assembly is
secured. The rail assembly supports the Meteorological Probe PWN-8B
during launch operations and imparts a stabilizing spin of approximately
10 revolutions per second to the probe as it fravels out of the launcher
into free flight. Launch elevation angles are set with the support assembly.
Launch azimuth angles are set with the pedestal assembly. Electrical firing
circuitry for the PWN=-8B and the appropriate connectors are provided as
part of the support assembly and pedestal assembly. Major dimensions of
the launcher are presented in Figure 6.3-16.
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FIGURE 6.3-15 ROCKET LAUNCHER LAU-66/A
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Launcher Base,

The launcher base is a heavy steel plate which anchors the pedestal
assembly to the concrete launch pad.

Pedestal Assembly.

The pedestal assembly consists of a fixed outer cylinder with an
azimuth angle setting plate. The fixed cylinder and a rotating inner
cylinder with an azimuth angle setting plate. The fixed cylinder consists
of a heavy-wall aluminum cylinder with flanges at both ends. The bottom
flange is bolted to the launcher base in a fixed position. The upper flange
supports the rotating azimuth plate which is welded to the inner rotating
cylinder. A junction box is supplied as part of the fixed cylinder to
accept the blockhouse firing line connector and also the wiring harness
connector from the support assembly. The inner rotating cylinder consists
of a heavy-wall aluminum cylinder, welded to the azimuth angle setting
plate. The top end of the inner cylinder is fitted with a yoke for attach-
ment of the support assembly.

Support Assembly.

The support assembly consists of an aluminum "I" - beam for the
launch rail support, two elevation bearings, and side-plate aluminum
bracketry for attachment of the support assembly to the pedestal assembly
elevation angle setting lock. Attachment fixtures for the rail assembly
are located fore and aft on the aluminum "I" -beam. The two bearing
subassemblies are included for the primary attachment to the pedestal
assembly. Firing line wiring harness, associated junction boxes and
electrical connectors are included as part of the support assembly.

Rail Assembly.

The rail assembly consists of five identical aluminum cast rail
sections which have been bolted together o form a ten foot long 4-rail
assembly. The four rails are equally spaced and form a continuous helix
throughout the length of the launch rail assembly. Approximately one-
third of a revolution is completed by the rails from the breech end to the
muzzle end. The edges of the rails are stepped to support the probe by
the dart fins and the rocket motor bourrelet.
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6.3.4 Skua.

The Skua is 226 cm (89 in) long, 13.1 cm (5.15 in) diamefer and
weighs 37.5 kg (82 1/2 Ib). The rocket motor case is manufactured from
100 t/in2 steel and is filled with a moderate specific impulse end burning
case-bonded solid propellant. The rocket is fitting with four fins and,
in the parachute role, the nose cone is made of glass fibre. Separation
of the payload compartment is obtained by means of a thermal switch which
operates at the end of motor burning and a time switch which may be pre-
set to achieve the required separation height. These swiiches close the
firing curcuit to another small solid propellant motor which ejects the

payload compartment clear of the rocket. with a relative velocify of
14 m/sec (45 ft/sec).

The boost arrangement is recoverable. [t separates from the main
rocket at an altitude of 15 m (50 ff) and descends by parachute. The
boost motor can then be returned for refilling and the boost support structure
can be cleaned, inspected and re-assembled for the next firing. It has
been found that 85% of the boost and boost support structure can be re-
used after each firing.

A payload space of 8,200 cu cm (300 cu in) is available and pay-
loads of up to 6 kg (13 Ib) may be accommodated. The standard equipment
is a British (Irving) radar reflecting parachute of 4.6 m (15 ft) diameter
and a sonde transmitter capable of fransmitting at 28 m/cs.

Skua has operated successfully from a launch site at South Uist
in the Hebrides, and it is in service with the British Meteorological Office.

Performance.

The Skua can reach an altitude of 90 km (295, 000 ft) with a pay-
load of 1.8 kg (4 1b) using a 85° launch. This performance is attained
using a 0.2 second boost system giving a launch velocity of 100 m/sec
(328 ft/sec). Without the boost the altitude is approximately 64 km
(210,000 f1) for the same payload.

Using the standard boost and launching techniques i.e., correction
for the ballistic winds, the dispersion of impact points due fo wind lies
within a circle of 5.3 kilometers radius for 1 m/sec (3.3 miles for 3 ft/sec)
error in ballistic wind for a 72 km (236, 000 fi) altitude.
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The curves of Figure 6.3-17 illusirate the rocket altitude capabilities
against payload, time and range. The Skua major characteristics are pre-
sented in Table 6-13,

Launch System.

The high speed launch system consists basically of a 3-part 54 cm
(21 in) diameter tube mounted on an ordinary commercial vehicle for
maximum mobility. The tube is elevated hydraulically and accurate adjust-
ment is carried out by a manual screw acting on the diagonal stays. Azimuth
adjustments are obtained by altering the direction in which the vehicle is
pointing and a sighting bar is placed below the driver's position. It has
been found that azimuth accuracies of 1/2° can be obtained and elevation
accuracies of 1/10°,

Loading is carried out by lowering the tube to an angle of 15° and
inserting the complete rocket and boost assembly with the aid of special
loading rods.

603.5 MT—]350

The MT~135 is the Japanese version of the Arcas. The MT-135 is
longer, larger in diameter and weighs almost twice as much as Arcas. The
burning time is appreciably shorter, the thrust level is greater and the
altitude performance is slightly less than that of the Arcas. A comparison
of the major characteristics is presented in Table 6-14.

6.3.6  Super Loki=Chaff Dart.

The Super Loki Dart meteorological rocket system has been developed
for NASA - Marshall Space Flight Center to obtain high=altitude (85 km) wind
data with a low cost rocket vehicle and a radar-reflective chaff payload.

The Super Loki Dart consists of a scale-up of the older Loki Dart system,which
has been in use for many years to gather wind data to altitudes up to 65 km.
The Super Loki Dart two-stage vehicle consists of a high-impulse solid~-pro-
pellant rocket motor as the first stage, and a non-propulsive dart which
contains the chaff payload as the second stage.
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TABLE 6-13

SKUA ~ GENERAL SPECIFICATIONS

ROCKET (with parachute and sonde)

Overall length with motor
Diameter

Weight including filled motor
All burnt weight

Payload weight

Payload volume

Peak Altitude (for 10 Ib payload)
Burn-out altitude (approximately)
Launch velocity

Initial acceleration (max)

Flight acceleration (max)

Boost breakaway altifude

PAYLOAD

Parachute

(Irving Type)
Transmitter

Type
Frequency

LAUNCHER

Length

Vehicle Type

Weight (vehicle and launcher)
Launch tube length

Max launch angle range

- 284 ~

226 cm (89 in)

13.1 em (5.15 in)
37.5 kg (82 1/2 1b)
14.3 kg (31 1/2 Ib)
4.5kg (10 Ib)

8,200 cu cm (500 cu in)
70 km (230,000 feet)
15 km (48,000 feet)
100 m/sec (328 ft/sec)
57 g

12g

15 m (50 ft)

4.6 m (15 ft) dia
Met Office Rocket
Sonde Mk 1

Met 56,000

28 m/cs

6.5 m (21 ft)
Bedford RL
5,084 kg (5 ton)
9.8 m (32 ft)
Unrestricted



TABLE 6-14

Total Length
Diameter

Total Weight
Payload Weight
Burn Time
Average Thrust
Max Velocity

Apogee
(80° launch angle)

JAPANESE MT-135 VS ARCAS

MT-135

3.2m
13.9 cm
68 kg
10 kg
10.5 sec
825 kg

1370 m/sec

55 km
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ARCAS

2.3m
11.4 cm
35 kg
5.4 kg
29 sec
155 kg

1050 m/sec

61 km



Altitudes as high as 125 km have been obtained with this vehicle
system during the development flight tests at White Sands Missile Range.
Altitudes to 110 km were achieved for flights from sea level launch sites.
A helical-rail launcher has been developed to impart spin or roll to the
vehicle prior to release in order to minimize impact dispersion and
associated range safety problems.

The basic Super Loki rocket motor can be used to propel larger
diameter instrumented dart systems to altitudes on the order of 85 km to
upgrade the atmospheric temperature profile measurements currently being
conducted by the standard-size Loki.

The Super Loki Dart as shown in Figure 6.3-18 is a two-stage sound-
ing vehicle consisting of a solid=-propellant Super Loki rocket motor as the
first stage and a non-propulsive dart containing the payload as the second
stage. A dimensional sketch of the vehicle is shown in Figure 6.3-19.

This vehicle is essentially a scaled-up version of the standard Loki Dart
vehicle as indicated in Figure 6.3-20.

The Super Loki rocket motor consists of an aluminum case with an
internal burning cast-in-the-case solid propellant. Major design character-
istics of the rocket motor are presented in Table 6-15. An aluminum inter-
stage coupling structure is located at the head end of the rocket motor.

The propellant fuel is a polysulfide polymer and the oxidizer is ammonium
perchlorate. The igniter consists of two parallel 1 watt/1 ampere no-fire
squibs and an appropriate ignition charge. The igniter is separable from

the motor and is installed at the launch site. A cross-section view of the
Super Loki rocket motor with the igniter installed is shown in Figure 6.3-21.

The high altitude chaff dart for the Super Loki system consists of a
steel cylindrical body with a steel ogive and an aluminum tail piece. The
cylindrical body contains the chaff payload which is packaged into split
steel staves. The ogive is retained at the forward end of body with shear-
screws which are sheared during payload expulsion out from the forward end
of the dart. The tail piece contains an electrically-actuated 145-second
pyrotechnic time delay and a small payload ejection charge. Four steel
fins are roll-pinned into the dart tail for flight stability. The aft end of
the dart tail is boattailed to reduce aerodynamic drag and to be used to
mate the dart fo the booster. A cross=section view of the chaff dart is

shown in Figure 6.3-22, Major chaff dart characteristics are presented
in Table 6-16.

The payload consists of 0.0127 mm (0.5 mil) "S"~band aluminumized-
mylar chaff.
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FIGURE 6.3-18 SUPER LOKI VEHICLE CONFIGURATION
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100 KM HIGH ALTITUDE CHAFF DART

M

SUPER LOKI MOTOR

\
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FIGURE 6,3-19 SUPER LOKI CHAFF DART VEHICLE CONFIGURATION
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TABLE 6-15

SUPER LOKI ROCKET MOTOR
DESIGN CHARACTERISTICS SUMMARY |

Length (inches) 78
Diameter (inches) 4
Weights:
Inert Motor With Interstage (kg) S5.26 (11.6 1b)
Propellant (kg) 16.87 (37.2 Ib)
Total (kg) 22.14 (48.8 Ib)
Motor Mass Fraction 0.76
Burning Time (seconds) 2.0
Chamber Pressure:
Maximum (Atmospheres) 100.02 (1470 PSig)
Average (Atmospheres) 83.69 (1230 PSig)
Thrust at Sea Level:
Maximum (kg) 2608.20 (5750 Ib)
Average (kg) 2018,52 (4450 1b) |
i
Total Impulse at Sea Level (nt-sec) 3.96 (8900 Ib-sec)
Specific Impulse at Sea Level 239

TABLE 6-16

SUPER LOKI CHAFF DART DESIGN CHARACTERISTICS

Length 122,33 cm (48.16 inches)
Diameter 4.13 cm (1.625 inches)
Weight 6.12 kg (13.5 pounds)
Payload Volume 491.61 cm3 (30 inchesd)
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The Super Loki Launcher consists of four helical rails which complete
approximately one-third of a revolution throughout the launch rail length.
The launch rail assembly as shown in Figure 6.3-23 consists of six cast
aluminum sections which are bolted together to form a continuous 4.39 m
(12 feet) length. The edges of the rails are stepped to support the vehicle
by the dart fins and the rocket motor nozzle ring. The outside diameter
of the launch rail assembly is 26.04 cm (10-1/4 inches).

The purpose of the launch rail is to impart an 8.5 rps spin to the
vehicle by constraining the dart fins to a helical path during their travel
along the launch rails. The aft end of the motor fravels for 4.39 meter
(12 feet) prior to its release from the launcher.

The Super Loki Launch Rail Assembly can be mounted to any suitable
launcher base by means of forward and aft mounting brackets. A launcher
base specifically designed for this rail is shown in Figure 6.3-24.

Trajectories for the Super Loki are presented in Figui'e 6.3-25 for

various launch angles from sea level. A nominal trajectory summary is
presented in Table 6-17.
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FIGURE 6.3-24 TYPICAL BASE FOR SUPER LOKI LAUNCH RAIL
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TABLE 6-17

NOMINAL TRAJECTORY SUMMARY

SUPER LOK!I DART, 80° Q.E. SEA LEVEL LAUNCH

Burnout Altitude (m)
Burnout Range (m)
Burnout Time (sec)
Apogee Altitude (m)
Apogee Range (m)
Apogee Time (sec)
Impact Range (m)

Impact Time (sec)

BOOSTER

1577.6 m (5,176 ft)
298.1 m (978 ft)
2.1

2318.9 m (7,608 ft)
446.2 m (1,464 )
6.1

462.4 m (1,517 f1)

108
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DART

1577.6 m (5,176 1)
298.1 m (978 f1)

2.1

113.4 km (372,000 ff)
41.8 km (137,000 f1)
6.1

83. 8 km (275,000 ft)
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6.3.7 Viper Dart.

The Viper Dart Robin Meteorological Rocket System has been
developed to obtain high altitude density and wind data by utilizing
the Robin inflatable sphere as a sensing device. The system consists
of a rocket motor, an unpowered dart and the Robin inflatable sphere.
Flight tests of the system provided density, temperature, pressure and
wind data from an altitude of about 90 kilometers to an altitude of
approximately 40 kilometers or less.

During the flight test phases of the initial development program,
reliable performance was obtained to 125 km with a slightly longer and
heavier dart than originally contemplated. This was due to the added
requirement for extra volume for a tracking aid. Although higher
altitudes were obtained for smaller and lighter weight darts, the larger
dart design was chosen as final for the initial development program.

The 125 km Viper-Dart vehicle consists of a Viper solid~propellant
rocket motor as the first stage and an inert dart as the second stage.
Figure 6.3-26 presents the vehicle configuration. The dart weight has
been optimized to produce a high ballistic coefficient for efficient
coasting to the desired apogee altitude. The dart diameter of 2,00-
inches has been chosen as a tradeoff among factors of altitude performance,
flight stability, payload packaging and thermal protection for the pay-
load. The dart employs an aft-end boattail for interstage coupling, for
housing the dart igniter leads and to reduce base drag during coasting=
dart flight. The interstage has been designed as a tradeoff between
shallow angles to reduce drag and larger angles which reduce weight.
Launch lugs are located on fore and aft regions of the booster to mate
the vehicle with the launch rail.

The dart design is shown in Figure 6.3-27, The dart has a relative-
ly long length-to~diameter ratio with a high fineness=ratio ogive. A boat-
tail structure aft of the fins is employed to reduce base drag and provide a
convenient means of intersiaging. The dart is designed to have a gross
weight of 29.5 lbs. which gives reliable performance when used with the
Viper Rocket motor. The basic dart diameter is 2.000=inches and the
length is 58,0 inches.
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The payload ejection system is made up of two components, i.e.,
the pyrotechnic time delay and the expulsion charge. The pyrotechnic
time delay is ignited at launch at the same time the booster motor is
ignited. After the time delay has burned for a specified time, ignition
from the time delay is provided to the expulsion charge. The expulsion
charge consists of 5 grams of boron potassium nitrate pellets. Upon
ignition these pellets generate a high pressure behind the piston which
forces the ejection piston forward. The first motion of the ejection piston
forces a hollow metering pin into the Robin sphere inflatable capsule.
Further forward motion picks up the outer piston, which transmits a force to
the ogive to shear the shear-screws which hold the ogive in place. In
this way, the sphere package and the ogive are ejected. At this point
in the ejection sequence, the piston is stopped at the forward end of
the dart by a swagging which prevents any of the burning boron potassium
nitrate pellets or hot exhaust gases from contacting the sphere. The
staves around the sphere are allowed to separate after ejection; thus
allowing the sphere to expand and inflate. The dart ogive contains the
tracking beacon.

The interstage is an aluminum coupling structure between the
booster and the dart, which also forms an aerodynamic fairing from the
dart diameter to the booster diameter. The interstage is connected to the
booster through a threaded connection at the forward end of the booster.
The interstage structure is thereby attached to the booster for the entire
flight duration. Internal surfaces of the interstage are machined to
accept the boat~tail of the dart at a point close to the motor and at another
point at the forward end of the interstage. Longitudinal force, exerted
from the dart when the system is accelerating, is absorbed at the end of
the boat~tail and at the forward end of the booster. Because of the severe
aerodynamic heating environment during boost, the interstage is coated
with a 0.030-inch thickness of an ablative coating for thermal protection.
The rocket motor and flight hardware are shown in Figure 6.3-28.

The Viper is a 3.52 KS 8500 solid~propellant rocket motor adaptable
for sounding vehicle propulsion, sled propulsion and other uses. The motor
case is a cylindrical rolled and welded tube with hemispherical ends of
heat=-treated chrome molybdenum steel, with a minimum yield point of
165,000 psi, and with nominal dimensions of 6.5 inches outside diameter
and 107-inches in length. The nozzle is an assembly of carbon steel with
a graphite insert. The propellant is polysulphide/ammonium perchlorate,
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case-bonded type.

The nominal weight of the complete rocket motor is 191.68
pounds. The nominal weight of the rocket motor components are as
follows:

Metal Case 31.00 Ibs
Head Cap 2,13
Nozzle 7.25
Liner 2,05
Insulation 0.50
Propellant 148.75
Total 191,68 lbs.

The nominal total impulse at sea level is 31, 830.3 Ib/sec for a nominal
total time of 3.52 seconds. The vehicle component weights are presented
in Table 6-18. A nominal performance summary is presented in Table
6~19 with a typical trajectory in Figure 6.3-29.

The Viper Dart Robin is currently being used for routine wind
and density measurements at Cape Kennedy, WSMR and PMR in its
present 125 km version. At the same time a further development program
is being pursued by AFCRL to increase the altitude of this system to 140 km.

6.3.8 Cajun Dart.

The Cajun Dart vehicle was developed by Spgce Data Corporation
for the Aero-Astrodynamics Laboratory of George C. Marshall Space Flight
Center to measure winds in the altitude range from 70 to 90 kilometers.

The Cajun Dart chaff rocket is a two stage dart type sounding rocket
vehicle. In the launch configuration the vehicle has a gross weight of
about 200 pounds and an overall length of 13 feet. Figure 6.3~30 shows
the vehicle with the basic dimensions and weights. The first stage of the
Cajun Dart is the Cajun rocket motor, Mod 11, manufactured by Thiokol
Chemical Corporation, Elkton, Maryland. The Cajun motor is 102 inches
long and has a principle diameter of 6.5 inches. The motor less flight
hardware weighs 168 pounds with 118,5 pounds of propellant. The nominal
burning time of 2.8 seconds, yields total impulse of 25,250 pounds seconds,
yields a burnout velocity of slightly over 5000 feet per second af an altitude
of 7,000 feet. At Cajun burnout, separation of the Dart from the Cajun
booster is accomplished by allowing the aerodynamic drag differential
between the bosster and Dart to physically separate the two (2) stages.
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TABLE 6-18

VIPER-DART WEIGHT TABLE

Vehicle Launch Weight 234.18 Ib.
Vehicle Burnout Weight 85.33 Ib.
Dart Coast Weight 29.50 lb.

Component Weight Breakdown:

Dart 29.50 lbs.
Interstage 3.5
Booster Fins 9.50
Booster Motor 191.68

Case 31.00

Head 2.13

Nozzle 7.25

Miscellaneous 2.55
Propellant  148.75
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TABLE 6-19

NOMINAL PERFORMANCE SUMMARY

Vehicle Name Viper Dart

Booster - Stage | Viper

Dart Weight/Diameter 29.5 1bs/2.00 in

Launcher Setting (Nominal) 80.00 Q.E.
Time Altitude Range Velocity

Event (Sec) (feet) (feet) (Ft/Second)

Stage |

Ignition 0 0 0 0

Burnout (Separation) 3.10 8,500 1553 5934

Booster Apogee 10.9 18,000 3,500 22

Booster Impact 178.5 0 3620 97

Stage 2

Dart Apogee 162 405,179 152, 547 950

Dart Impact 323 0 305, 140 4,600

The payload is deployed at dart apogee (162 seconds).
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FIGURE 6.3-30 CAJUN DART VEHICLE CONFIGURATION
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After separation the Dart continues to coast o pay load ejection.

The Dart 1-3/4 inches in diameter, weighs 17 pounds and is
51.7 inches long. The dart is a non-thrusting stage functioning only
as a low drag payload housing. The nose of the Dart is designed to
have a hypersonic optimum shape, keeping the aerodynamic drag to a
minimum. The aft end of the Dart has been boat-tailed, forming the
interstaging surfaces as well as reducing the base drag. These two (2)
factors along with the otherwise sleek shape of the Dart combine to
produce a very low drag rocket configuration. The payload housed
inside the Dart is 30 cubic inches of 0.5 mil, aluminized mylar, foil
chaff cut to S-band length.

Figure 6.3.31 is a cutaway drawing of the dart showing the
external dimensions as well as the internal configuration.

In order fo make a system reliably measure winds from 90 kilo-
meters down, the nominal vehicle apogee must be above this altitude.
As shown in Figure 6.3.32, the nominal apogee point for the Cajun
Dart is 93 kilometers altitude, 37 kilometers range at a time of 140
seconds, when fired at an 80 degree elevation angle. This will keep
the apogee of all flights above 90 kilometers even with the normal
vehicle dispersion.

When the Dart has reached its apogee, the payload is ejected.
This expulsion is accomplished by the use of 145 second pyrotechnic
time delay housed in the Dart tail and initiated at launch. At 145
seconds the time delay ignites a 5 gram expulsion charge which ejects
the Dart nose cone and the chaff payload by forcing a piston the full
length of the Dart. The chaff is then free to drift with the winds as
it falls.

The Cajun Dart has been used by NASA at Cape Kennedy for

routine measurement of high altitude winds but is currently being replaced
by the lower cost Super Loki.
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6.3.9 Boosted Arcas . (See Figure 6.3-33)

There are various versions of the boosted Arcas in limited use
today as indicated in Table 6-20. The Arcas is used as a second stage
in these configurations and the payload capacity is as follows.

Payload Weight 10-30 Ib
Payload Diameter 4.25in
Payload Length, Nominal 26 in.
Payload Volume, Nominal 305 in.

The performance of the boosted Arcas vehicles depends upon the
booster used. A brief description of each of the boosted Arcas con-
figurations is presented in paragraphs which follow.

The booster is an Atlantic Research 0.8-KS=2700 rocket motor.
Power for ignition of both stages is provided by a ground source, a motion.
switch firing the sustainer igniter after positive ignition. An optional
sustainer igniter incorporating a 2-second delay is also available. Fin
assemblies are preset fo provide a roll rate of approximately 25 rps at
burnout.

The vehicle is launched from the standard ARCAS rocket launcher
with the breech door open. Assembly and launch preparation requires no
special handling equipment and can be accomplished by a two-man crew.

VEHICLE DATA

First=State Motor

MARC 14A1

Nominal performance rating 0.8~KS-2700

Principal diameter 10.2 cm (4.0 in)

Overall length 71.6 cm (28.2 in)

Igniter: Type Pyrotechnic
Recommended firing current 3.5-5 amp
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FIGURE 6.3-33 BOOSTED ARCAS VEHICLE CONFIGURATION
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Second-Stage Motor

MARC 2B1 ARCAS

Nominal performance rating 29-KS-324
Principal diameter 11.4 cm (4.5 in)
Overall iength 154.2 cm (60.7 in)
Igniter: Type-Pyrotechnic (optional 2-second delay squib)
Recommended firing current S amp

Weights (less payload)

Gross launch weight 46.3 kg (102.0 Ib)
First-stage burnout 41.3 kg (?1.0 Ib)
Second-stage ignition 30.1 kg (66.4 |b)
Second-stage burnout 10.6 kg (23.3 1b)

Sidewinder Arcas. (See Figure 6.3-34)

Originally developed by the Naval Missile Center, under the
sponsorship of Air Force Cambridge Research Laboratories, the Sidewinder-
ARCAS vehicle used propulsive stages which are proven, qualified rocket
motors.  Staging is accomplished by a bayonet~type interstage adapter that
provides structural rigidity during boost, but permits drag~induced stage
separation. Fin assemblies are preset to provide approximate spin rates
of 7 to 20 rps at second stage burnout.

The launch system is a 15 foot long rail assembly designed for mount-
ing on an adjustable~boom launcher of the type available at most launch
sites. Assembly and launch preparation require no special handling equip-
ment and can be accomplished by a two=man crew.

Power for ignition of both stages is provided by a ground source,
a motion switch completing the second-stage firing circuit only after
positive booster ignition. A delay squib in the second stage igniter allows 2
seconds of coasting flight between booster burnout and second stage ignition.
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FIGURE 6.3-34 SIDEWINDER ARCAS VEHICLE CONFIGURATION
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SIDEWINDER ARCAS
VEHICLE DATA

First-Stage Motor

MK 17 Sidewinder 1A

Nominal performance rating 2.14-ES-3972
Principal diameter 12.7 cm (5.0 in)
Overall length 190.5 em (75.0 in)
Igniter: Type Pyrotechnic
Recommended firing current 3 amp

Second-Stage Motor

MARC 2C1 HV ARCAS

Nominal performance rating 29-KS-324
Principal diameter 11.4 cm (4.5 in)
Overall length 157.5 cm (62.0 in)
Igniter: Type - Pyrotechnic (with 4-second delay squib)
Recommended firing current 7 amp

Weights (less payload)

Gross launch weight 75.5 kg (166.3 1b)
First-stage burnouf 55.6 kg (122.5 Ib)
Second-stage ignition 30.6 kg (67.5 1b)
Second-stage burnout 11.1 kg (24.4 1b)

Sparrow Arcas. (See Figure 6.3-35)

Developed originally for the Pacific Missile Range Density Probe
(DENPRO) program, the Sparrow-HV ARCAS uses propulsive stages which
are proven, qualified rocket motors. Staging is accomplished by a bayonet-
type interstage adapfer that provides structural rigidity during boost, but
permits drag-induced stage separation. Fin assemblies are preset to provide
approximate spin rate of 8 to 20 rps at second-stage burnout.

The launch system is a 15-foot long rail assembly designed for
mounting on an adjustable=boom launcher of the type available at most
launch sites. Assembly and launch preparation require no special handling
equipment and can be accomplished by a two=man crew.
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FIGURE 6.3-35 SPARROW ARCAS VEHICLE CONFIGURATION
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Power for ignition of both stages is provided by a ground source,
a motion switch completing the second-stage firing curcuit only after
positive booster ignition. A delay squib in the second-stage igniter
allows 6 seconds of coasting flight between booster burnout and second
stage ignition.

VEHICLE DATA
First-Stage Motor

MK é Mod 3 Sparrow C-8

Principal diameter 20.3 cm (8.0 in)

Overall length 131.6 cm (51.8 in)

Igniter: Type Glow plug
Recommended firing current 30 amp

Second=-Stage Motor

MARC 2C1 HV ARCAS

Nominal performance rating 29-KS-324
Principal diameter 11.4 cm (4.5 in)
Overall length 157.5 cm (62.0 in)
Igniter: Type - Pyrotechnic (with 8-second delay squib)
Recommended firing current 7 amp

Weights (less payload)

Gross launch weight 93.5 kg (206.0 Ib)
Second-stage ignition 30.6 kg (67.5 Ib)
Second~stage burnout 11.1 kg (24.4 Ib)

Boosted Arcas Il. (See Figure 6.3-36)

The Boosted Arcas 1l uses a booster employing an internal burning
propellant grain and an Arcas motor case. This booster was developed by
Atlantic Research Corporation specifically for this vehicle and has had a
limited flight test history.

Staging is accomplished by a bayonet-type interstage adapter that

provides a rigid structure during boost, but permits drag=induced stage
separation.
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Power for ignition of both stages is provided by a ground source,
aposition switeh completing the second-stage ignition circuit only after
positive booster ignition. A delay squib in the second-stage igniter allows
4.5 seconds of coasting flight between booster burnout and second stage
ignition.

The vehicle is designed for launching from the standard ARCAS
rocket launcher with open breech door or from a 15 foot long rail,

Assembly and launch preparation can be accomplished by a two=man
crew,

VEHICLE DATA
First-Stage Motor

MARC 42A1 Booster

Nominal performance rating 3.0-KS-2740
Principal diameter 11.4 cm (4.5 in)
Overall length 163.6 cm (64.4 in)
Igniter: Type - Pyrogen, 1-watt, 1-amp squib

Recommended firing current 7 amp

Second-Stage Motor

MARC 2C1 HV ARCAS

Nominal performance rating 29-KS-324
Principal diameter 11.4 cm (4.5 in)
Overall length 157.5 cm (62,0 in)
Igniter: Type = Pyrotechnic (with 8.0 second delay squib)
Recommended firing current 7 amp

Weights (less payload)

Gross launch weight 61.4 kg (135.3 1b)
First-stage burnout ‘ 45.4 kg (100.0 1Ib)
Second-Stage ignition : : 30.6 kg (67.5 Ib)

Second-Stage burnout 11.1 kg (24.4 Ib)
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6.3.10 Nike Vehicles.

There are a number of Nike-boosted sounding rockets which are
used for geophysical research. Although these vehicles are too large
and too expensive for serious consideration as routine meteorological
rockets, they are briefly described here for sake of completeness. A
summary of the Nike-boosted vehicles is presented in Table 6-21. These
vehicles are designed to carry large payloads (greater than 50 Ibs) to
altitudes between 100 km and 300 km. Each uses the Nike M5 rocket
motor as the first-stage. This motor has a diameter of 16.5 inches, a
length of 135.5 inches and weighs 1342 lbs. This motor alone requires
significant handling equipment and could hardly be considered for
routine meteorological operations.
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6.4  Development Systems.

6.4.1 General.

There are a number of meteorological rocket vehicle develop-
ment programs which are currently being pursued. These programs
range from rather modest efforts such as improving the Viper Dart per~
formance to the state—of~the-art development of fragible boosters. A
brief description of the current meteorological rocket vehicle develop-
ment programs is presented in the sections which follow.

6.4.2 Improved Viper Dart.

The Viper Dart is currently being modified to improve the
apogee altitude performance from 125 km to 140 km. This is being
accomplished under an AFCRL program by using a propellant with a
higher specific impulse than the standard Viper. Techniques of stabiliz-
ing the booster after burnout are also being investigated to reduce the
problem of booster impact dispersion.

6.4.3  Super Loki Instrumented Dart.

The Super Loki vehicle is being modified by incorporating a
large diameter (2.1 inch) dart o extend the standard rocketsonde temp-
erature and wind measurements upward as high as 75 km. This program
is sponsored jointly by AFCRL and NASA-MSFC. The large diameter
dart will permit the incorporation of a large Starute decelerator, a
GMD~2 transponder instrument and more room for advanced sensors.
The cost of this vehicle should not be significantly greater than for the

- standard Loki vehicle.

The development of a 2.1 inch diameter instrument dart for the
Super Loki system is a follow-on to the chaff dart system development
to improve the altitude and measurement capability of current instrumented
systems. An 85 km apogee is achievable with the proposed instrumented
dart system, and the payload volume is more than double that of the
current instrumented dart systems. This increased volume can be used for
additional sensors, a transponder/telemetry sonde, and most important, an
increased-size parachute to obtain significantly slower descent rates of the
sonde during the measurement period. Temperature and wind measurement
errors of current systems are functions of the square of the descent velocity,
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and a significant improvement in measurement accuracy can accrue by
reducing the parachute descent rate. The cost of this instrument dart
system should not be significantly greater than the current instrumented
dart systems.

The proposed Super Loki Instrumented Dart system consists of the
Super Loki rocket motor and a 2. 1 inch diameter dart. The dart is des-
ighed to contain a maximum diameter parachute to extend the altitude
and improve the accuracy of wind and temperature measurements. Per-
formance of this system is as follows:

Launch Angle 85°

Dart Weight 14 Ib (6.35 kg)
Apogee Altitude 85 km

Apogee Range 15 km

Apogee Time 132 sec
Burnout Velocity Mach 5.4

Maximum Acceleration 1024
A nominal trajectory is plotted in Figure 6.4-1,

The 2. 1 inch diameter instrumented dart contains a payload volume
of 55 cubic inches. This is more than twice the payload volume of the
1.437 inch diameter (3.65 cm) instrumented dart which is currently being
used. Either a 1680 mc/GMD=(x) or a 403 mc/SMQ~1 sonde can be
used with the proposed dart depending upon ground-station aquipment.
Descent rates of the sonde system can be slowed to 230 fps (70.1 m/sec) at
61 km with a Super Loki system (W/CpA = 0,015 Ib/ft 2 or 0.073 kg/m 3,
Advantages of the Super Loki Instrumented Dart over the current Loki
Instrumented Dart are presented in Table 6-22,

An inflatable falling sphere payload has been procured by the Army
personnel at White Sands Missile Range for use with the existing chaff dart
design. Since altitudes of 125 km were obtained at White Sands, reasonably
good density data may be derived with the Robin falling sphere payload to
altitudes below 90 km with the Super Loki. Since the apogee altitude for
a sea level launch will only be about 113 km, the falling sphere density
data may be restricted to a maximum altitude of 85 km for sea level sites.

6.4.4 Destructible Arcas.

A destructible or fragmentible Arcas has been developed under a
previous AFCRL contract by incorporating explosive charges with a fiber-
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TABLE 6-22

COMPARISON OF THE SUPER LOKI
INSTRUMENTED DART SYSTEM
WITH THE CURRENT
INSTRUMENTED DART SYSTEM

80°Q.E. Apogee Altitude
Dart Diameter

Payload Volume

Payload Volume Avaliable

for Parachute

Parachute~Sonde Ballistic

Coefficient, W/Cg4A

Descent Rate at 61 km

Dart Ablative Coating

Super Loki
System

85 km
(278.9 k fi)

5.398 cm
(2,125 in)

901.3 cmd
(55 cu in)

612.87 cmd
(37.4 cu in)

0.073 kg/m?

(0,015 Ib/ft2)

70.1 m/sec
(230 ft/sec)

Not Required
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Standard Loki
System

63 km
(206.7 k ft)

3.65cm
(1.437 in)

491,6 cm3
(30 cu in)

262.19 cmS
(16.0 cu in)

0.146 kg/m>
(0.030 Ib/ft2)

100.6 m/sec?
(330 ft/sec)

Required




glass plastic rocket motor design. Sheet explosive 0.042-inches thick
was placed around the fiber—glass motor throughout its length in addition
to an explosive charge located behind the payload section at the for-
ward end of the rocket motor. After vehicle apogee and payload separa-
tion, the explosive charges were initiated and the remaining rocket was
fragmented into rather small pieces which had a sea level impact energies
on the order of 2.4 ft-lb (3,25 joules) maximum.

The vehicle contains an additional explosive charge between the
rocket motor head closure and payload which is initiated by a mechanical
timer unit at a timer predetermined and set prior to launch. Initiation
of this primary explosive charge subsequent to payload ejection results in
fragmentation of the forward section of the spent rocket motor assembly
and induces sympathetic detonation of the sheet explosive material on
the exterior of the motor case. Detonation energy of the sheet explosive
produces fragmentation of the motor case and fin assembly.

A description of the vehicle, is presented in Figure 6.4-2. Com-
parison of dimensional and weight data between the Frangible Arcas and
Arcas vehicles is presented in Table 6-23. A detailed weights breakdown
of the frangible vehicle, less payload, is shown in Table 6-24.,

The primary mission of the frangible vehicle is deployment of a
payload at apogee, and subsequent self-induced fragmentation of the
vehicle to particle sizes of very low impact kinetic energies. [n order to
ensure reliable fragmentation, the vehicle incorporates two independent
initiation systems. The primary initiator is a mechanical timer unit which
is armed at lift—off and started at rocket motor burnout. This unit is
designed to initiate fragmentation twenty seconds after payload ejection.
This time interval was selected to provide adequate clearance between
the payload and the spent rocket vehicle. '

A redundant, pressure sensing unit is incorporated as an independent
unit. This secondary initiator is armed at a nominal altitude of 24.4 km
(80,000 ft) during vehicle ascent and initiates fragmentation at a nominal
altitude of 18.3 km (60,000 ft) during vehicle descent in the event of a
failure of the primary system. The overall mission profile is illustrated in
Figure 6.4-3.

A major objective and requirement of the program was the develop-
ment of an integral explosive fragmentation system. Initial fragmentation
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TABLE 6-23

FRANGIBLE ARCAS VEHICLE DIMENSION AND WEIGHT COMPARISONS

Frangible Arcas Frangible Arcas
Standard Arcas w/o Fragmenta- with Fragmenta-
tion System tion System
Mod 0 Mod 3 Mod 3

cm in cm in cm in
Dimensions
Nose Cone 45,9 18.1 45,9 18.1 45,9 18.1
Parachute Container 29.2 11.5 2.2 11.5 29.2 11.5
Rocket Mir. Assy 1540 60.7 164.0 64.5 176.5 69.5
Over-all Length 229.1 90.3 239.1 94.1 251.6 99.1
Max. Body Diameter 11.4 4.5 1.9 4.7 12.2 4.8
Min. Body Diameter 11.4 4.5 11.2 4.4 11.4 4.5
Fin Span 33.0 13.0 33.0 13.0 3.0 13.0
Weights kg Ib kg Ib kg ib
Loaded Motor Assy 30.0 66.4 28.4 62.7 31.0 68.4
Payload @ ' 4,9 10.7 4,7 10.4 4.7 10.4
Total Launch Wt. (Nom). 34.9 77.1 33.1 73.1 35.7 78.8
Vehicle Wt. at Mtr.
Burnout (Less Payload
Weight) 10.6 23.3 8.9 19.7 11.5 25.4

Note: @ Includes parachute assembly, Arcasonde Instrument, nose cone and ballast.

-329 -



TABLE 6-24

DETAILED WEIGHT BREAKDOWN OF THE FRANGIBLE ARCAS VEHICLE (LESS PAYLOAD)

Nominal Weight Nominal Weight
Component at Lift Off at Burnout
kg Ib kg Ib
Motor Case Assembly 7.48 16.50 6.89 15.20
Fin Assembly 0.76 1.69 0.76 1.69
Fin Screws 0.01 0.03 0.01 0.03
Propellant Assembly @ 19.40 42,70 0.45 1,00
Retaining Sleeve 0.68 1.49 0.68 1.49
Explosive Module Fwd Plate 0.14 0.32 0.14 0.32
Explosive Module Aft Plate 0.13 0.29 0.13 0.29
Push Rod 0,01 0.02 0.01 0.02
Mechanical Timer Assembly 0.32 0.70 0.32 0.70
Redundant Initiator 0.14 0.30 0.14 0.30
Primary Explosive Charge 0.94 2,06 0.94 2.06
Sheet Explosive Charge &
Overwrap 1.04 2.30 1.04 2,30
31.05  68.40 11,51 25.40

Note: @ Includes propellant, headplate, O-ring, dimple motor and inhibitor.
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tests incorporated a single modular shaped explosive charge in the for-
ward end of the rocket motor. These initial tests showed adequate
fragmentation of the forward and aft motor sections, but the center

portion was left intact. 1t was interesting to note how the spent motor
case acted as a shock fube and provided fragmentation of the nozzle/fin
section while leaving most of the tube intact. Additional tests showed
that the shape given the single explosive charge had no appreciable effect
on the fragmentation results. Hence, it was evident that additional
explosive material applied directly to the motor case was needed to
achieve the required degree of fragmentation.

Tests utilizing linear shaped charges also proved unsuccessful.
Although the motor case was sectioned at each location of the charge, the
resulting fragments were unacceptable with regard to the maximum impact
kinetic energy requirement. This could have been overcome by increasing
the number of linear shaped charge strips, but the resulting vehicle weight
would have been prohibitive.

Subsequent tests incorporating a primary explosive charge in the
forward section of the vehicle, in combination with 1.07 mm- (0,042 in)
thick sheet explosive material on the exterior of the motor case, were
successful. Fragmentation to particle sizes yielding impact kinetic energies
of 3.25 joules (2.4 ft/Ib) or less were achieved.

Only one flight test of the complete system was conducted, and
it was apparent that the destruct charges performed as a cloud of debris
was tracked by radar. The apogee altitude for this test was only about
128,000 feet and a considerably larger vehicle would be required to make
up for the addition weight and drag penalties created by the explosives
system. In spite of the low performance, the principle of the destructible
motor case was demonstrated with this program. However, the other
problem areas were brought to light.

The major objections to the fragmentation technique are the safety
aspects of ground-handling a live rocket motor which is surrounded by
Class A explosives. The danger of such a device is considerably greater
than for a rocket motor alone. In addition, if the explosives initiation
system ever failed to function, then the subsequent ground-impact would
surely cause a high-order explosion. Further, even if the system functioned
satisfactorily, the nose cone itself presents a considerable falling mass hazard.
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In addiation, a fremendous number of full system flight tests would be
required, without a single failure, to adequately demonstrate an

order of reliability high enough for use over populated areas. For these
reasons, further efforts on this program have been terminated.

6.4,5 Consumable Rocket.

The U. S. Army Missile Command supported jointly by NASA-LRC
has been investigating the development feasibility of a consumable rocket.
The falling mass hazard safety criteria of a maximum particle kinetic energy
of 1 foot-pound (1.35 joules) and a particle size limitation of 0.1 pound
(45.3 grams) were adopted for this program. The proposed concept of the
consumable rocket is shown in Figure 6.4-4. After payload separation at
apogee, the motor case material is to be ignited so that it completely
burns to ashes before reaching the ground.

In the fall of 1965, on the basis of prior feasibility studies, a
decision was made to proceed with further development of the consumable
technique. Effort was directed toward improving the characteristics of
combustible case wall composites, based upon the following general
parameters in decreasing order of priority:

(1) Completeness of neutralization
(2) Safety in manufacturing and use
(3) High strength

(4) High autoignition temperature
(5) Low environmental degradation
(6) Least cost

Results of this study indicated two promising approaches to fabrica-
tion of consumable rocket cases -~ use of a homogeneous composite, and
use of a sandwich composite. These composites were investigated at
Picatinny Arsenal beginning February 1966. Material composities were
fabricated in 2.54 by 7.62 cm plates, 15.24 cm diameter standard test
rings, 2.54 cm diameter by 10.16 cm cylinders, 7.62 diameter by 22.86 cm
cylinders and 7.62 cm diameter by 45.72 cm pressure bottles.

The homogeneous composite structure was a filament~wound type,
consisting of nitrocellulose fiber wound together with reinforcing fiber in
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in an epoxy binder. Reinforcing fibers considered for use were E—glass,
Fortisan, HM-2 rayon, nylon and polypropylene. Samples of the
homogeneous composite using from 50 to 100% nitrocellulose fiber were
prepared and ignited at a simulated 61,000 meter altitude. The only
structure of this type which was adequately destroyed was the 100%
nitrocellulose/epoxy (6% of original weight). Other samples 2.54 cm
diameter by 7.62 cm long) were burned with the following percentages
of residue:

SAMPLE RESIDUE ( Wt. %)
73% NC/27% Fortisan 27
52% NC/48% Fortisan 49
77% NC/23% Fiberglass 39
63% NC/37% Fiberglass 60
73% NC/27% Nylon 32
40% NC/60% Nylon 56

The homogeneous composite remains a promising technique, whose
major improvement potential lies in improved tensile strength of the
nitrocellulose fiber.

The sandwich composite structure utilizes a pyrotechnic core "sand-
wiched" between alternate layers of filament-wound fiberglass or an
organic fiber in an epoxy binder. These composites were prepared in flat
specimens 2.54 cm by 10.16 cm, utilizing nitrocellulose paper, PETN
paper, double base propellants and pyrotechnics as core materials laminated
between 0.05 cm thick pieces of fiberglass~epoxy. Combustion tests at
61,000 meter simulated altitude showed the following results:

Nitrocellulose would ignite but would not
propagate.

PETN paper would not ignite.

Propellants lacked sufficient energy to
destroy the samples.

Pyrotechnics showed promise but needed
further development.
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A pyrotechnic core material was then developed by Picatinny
Arsenal especially for use in the sandwich composite. This core
develops about 1600 calories per gram with 5000° F flame temperature,
burns at 0.5 cm per second at 60,000 meters altitude, autoignites about
860°F, is insensitive to shock, and will not detonate explosively.
Pressure vessels, 7.62 cm diameter by 22.8 cm long, were fabricated in
the sandwich construction utilizing a filament wound 0.05 ¢m inner
layer of S=glass/epoxy, a 0.152 cm pyrotechnic core, and a 0.05 cm
S-glass/epoxy outer layer. These vessels, with burst pressures of
280 kg/cm?, were essentially reduced to small pieces of weak fibers
when burned at a simulated 36.6 km altitude. A similar configuration
of Fortisan rayon with a room temperature burst pressure of 176 kg/cm?2
was reduced to ash when burned at 36.6 km simulated altitude.

The new pyrotechnic core in a sandwich construction surpasses
all other concepts studied to date for neutralization of the falling mass
hazards. A continuation of the program is aimed at optimizing the
sandwich construction, and designing a rocket motor case and fins for
static and flight demonstration tests.

The nozzle construction presents a special problem which must
also be included in the investigation. Data obtained in prior studies of
consumable rockets revealed that dispersion of the heat absorbed in the
nozzle section during the rocket motor thrust phase constitutes a threat
to the surrounding consumable components. Any addition of insulation,
however, is detrimental to efficient neutralization. A possible solution
to this problem is the disposal of the nozzle section shortly after motor
burnout. Means of accomplishing this includes (1) the use of a consuma-
ble nozzle section which is protected from erosion and heat for the
duration of thrust, but which autoignites shortly thereafter; or (2) the
use of a small detonable charge which breaks up the nozzle section with-
out damaging the motor case. Early investigation of these and possibly
other techniques is planned. Concepts will be developed and tested in
rocket exhaust environment.

6.4.6 Army RDT and E Rocket.

Development efforts are currently under way on a new RDT and E
rocket by the U. S. Army Missile Command. This rocket is a single~stage
vehicle of about the same size and shape as the Arcas. Burning time is
reduced, however, to about ten seconds, and it is doubtful that the desired
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apogee altitude of 72 km will be achieved with the current design.
Design characteristics are listed in Table 6-25.

The rocket motor consists of a resistance welded stainless steel
tube, ARMCO 21-6-9, with a 0.055-inch * 0.004-inch wall and a
yield siress of 150 ksi. The head closure consists of stainless steel 301
1/4 H SS and is 0,109-inches thick. The nozzle retaining ring is
321 stainless steel. There is a graphite throat insert and a threaded
aluminum retaining ring. The motor insulation consists of 0.070~inch
thick REB. The design chamber pressure of the motor is 3750 psi.
The propellant is acrylonitrite-butadiene-styrene.

The vehicle fins are made from 0.063-inch thick stainless steel
and are resistance-welded to the motor case. A split parachute canister
of PUC plastic is used, This is interesting since a split parachute
canister was originally used with the Arcas. Lack of structural rigid-
ity caused vehicle breakup with the Arcas.

The design goal is for a production cost of $350 for the vehicle.
6.4.7 Kangaroo.

The Kangaroo Dart is a solid-propellant sounding rocket vehicle
which was developed by the Aeromechanics Branch of the Pacific Missile
Range. The Kangaroo concept consists of retaining a non-propulsive
dart containing the payload in an insulated canister inside the rocket
motor port during the boost phase of flight. This dart is expelled from
the rocket motor at burnout by a combination of motor chamber pressure
and drag deceleration of the booster. The dart then coasts to apogee,
and the booster remains stable throughout its low altitude trajectory fo
impact.

The Kangaroo Dart fwo=stage vehicle employed a dart payload
housing which was submerged in the rocket motor to contain the dart
during propulsive flight. At motor burnout the dart is ejected by tail-
off chamber pressure and booster deceleration. The ejecting dart causes
the shear—pinned nose cone tip to be separated from the vehicle, and the
dart continues to eject through the aperature thus formed. The aft end of
the dart is tapered in order to receive a pick-up fins canister during dart
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TABLE 6-25

AMICOM RDT & E ROCKET DESIN CHARACTERISTICS (MK 4 Mod i)

Vehicle Performance

Altitude at apogee, 80° QE (ft)
Time to apogee (sec)

Velocity at burnout (ft/sec)

Mach No. at burnout

Maximum Dynamic Pressure Ib/ft2

Vehicle Physical Characterisitcs

Diameter (in)

Weight
Total (Ib)
Burned (lb)
Discharge (lb)

Statfic Stability calibers

Nosecone

Fins
Number
Span (in)
Root

Sweep Angle (deg)

246,760

126
4700
4,67

13,789

4,875

97.83
43,05
54,78

1.6
4~caliber tangent ogive
(0.250" thick plastic)

4
12,83

5.00
60

Dimensions and Performance Characteristics for Rocket Motor (MK 4 Mod 11)

Diameter (in)

Propellant weight (Ib)
Motor weight (Ib)
Action time (sec)
Specific Impulse (sec)
Maximum pressure (psig)
Grain length (in)
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Table 6-25 AMICOM RDT & E Rocket Design Characteristics - continued -

Rocket Motor Weight Breakdown (lIb)

Motor Chamber 18.28
Nozzle End Restricter 0.13
Insulation 4,46
Nozzle 2.82
Propellant 54.00
Motor Weight 79.69
Consumables 54,78
Burnout Weight 24 .91
Vehicle Weight Breakdown (Ib)
Ogive 2.48
Sleeve (Steel) 0.36
Pedestal (Steel) 3.44
Separation Device 1.00
Parachute and Canister 4.55
Payload 3.00
Fins (Steel) 3.31
Motor 76 .69
Vehicle launch 97.832
Discharge 54,780
Vehicle Burnout 43.052
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Table 6-25 AMICOM RDT & E Rocket Design Characteristics = continued -

Drag Coefficient Data

Mach No. Cb

0 0

0.5 0

1.0 .250
1.5 .290
2,0 .275
2.5 .250
3.0 .230
4.0 .200

Flight Velocity Profile

Flight Velocity
Time
(sec) (f1/sec)
2.5 2250
5.0 39200
7.5 4600
2.0 4700
20.0 3550
30.0 3100
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ejection. A propellant delay charge is used at the aft end of the dart
canister housing to prevent initial motor chamber pressure from eject-
ing the dart at lift-off before vehicle acceleration becomes large
enough to refain the dart. A scale drawing of the vehicle assembly is
shown in Figure 6.4-5 and a vehicle weight breakdown is presented
in Table 6-26 for the Viper rocket motor configuration.

The advantages of the Kangaroo concept are the elimination of
the aerodynamic heating of the dart and pay load during the early boost
phase and a shorter vehicle length than for the more standard two-stage
booster=dart configuration. Some of the dart payloads require an
ablative coating on the dart surface to reduce the aerodynamic heating
input. Dart separation problems have occasionally occurred and have
caused low flights. These problems have been traced to large bending
moments af the inferstage coupling. The Kangaroo concept is an
attempt to avoid these problem areas.

The disadvantages of the Kangaroo concept are a severe perform=
ance penalty and high cost. The canister housing must be machined
and insulated to protect it from the motor chamber gases. In addition,
a nose cone assembly, a delay charge, a forward bulkhead and a pick-
up fin canister must be fabricated. All of these items add significant
cost and weight to the regular booster dart system.

6.4.8 Destructible Dart.

A proposed solution to the falling mass hazard problem has been
the use of a destructible dart constructed with Pyro Ceram - a Corning
Glass Works product. The proposal has been to fabricate the dart
structures with this material, use powdered lead as ballast and destruct
the entire assembly at apogee to release the payload. It is reported
that a concentrated point load will cause the Pyro Ceram material to
fracture into small granular particles no larger than 0,250-inch in
diameter. Table 6-27 presents a list of the physical properties of this
material in fabricated form.

Although the Pyro Ceram material appears fo be reasonably strong,
fabrication into a dart structure and the mechanical fidelity during sharp-
edged booster shocks may become significant problems. The material
does not appear to be inexpensive.
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TABLE 6-26

KANGAROO WEIGHT TABLE

Vehicle Launch Weight 243.75 Ib.
Vehicle Burnout Weight 95.00
Dart Coast Weight 18.00

Component Weight Breakdown:

Dart 18.00 Ib.
Head Adapter
Nose Cone 24.07
Dart Retaining Tube
Booster Fins 10.00
Booster Motor
Case 31.00
Head 2,13
Nozzle 7.25
Miscellaneous 2.55
Propellant 48.75
243.75 Ib.
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TABLE 6-27

CORNING GLASS WORKS PYRO CERAM PHYSICAL PROPERTIES

Density 2.93 gm/cm3
Water Absorption 0.00%
Porosity 0.00% Void Volume

Ave. Coeff. of Expansion (0-300°C) 9ox1o'7/°c

Thermal Diffusivity (at 25°C) 8.0x10—3cm2/sec.
Youngs Modulus 17.0x100 psi
Compressive Strength 350x10° psi
Poisson's Ratio 0.22

Shear Modulus 7.0x10% psi

Bulk Modulus 10. 1109 psi
Modulus of Rupture (Tumbler-Abraded) 100x103 psi
Knoop Hardness (100 gm) 640

Loss Tangent (at 8.6 GHy) 7x10%
Dietectric Constant (at 8.6 GHy) 7

Volume Resistivity (at 250° C) lx]08 ohm-cm
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The proposed system includes a booster rocket which would
impact within a 1-mile radius of the launch site. This is a serious
limitation for launchings near populated areas, since 2,000 acres of
land would be required to be cleared. Also to prove the reliability of
the system would take thousands of flight tests without a single failure.
This appears to be an expensive program.
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6.5  Discussion.

6.5.1 General.

Several topics dealing with meteorological rocket vehicles are
worthy of a brief discussion. These topics which concern vehicle per-
formance, wind-sensitivity and impact dispersion are presented in the

following sections.

6.,5.2 Vehicle Performance.

The performance of single stage vehicles is particularly sensitive
to burning time. For 65 km rockets a burning time of about 30 seconds
results in maximum altitude. For longer burning times, the vehicle
gravity turn causes the velocity vector to flatten out to a low flight
path angle and apogee altitude is reduced. For shorter burning times,
higher velocities are experienced in the lower high density regions of
the atmosphere, and the resulting drag losses degrade the altitude per-
formance. Thus, attempts to duplicate Arcas performance with short
burning time internal-knowing rocket motor designs resulted in significant-
ly larger and heavier rockets than the Arcas. Since the wind-sensifivity
of a vehicle is a function of the burning time, a compromise should be
made between maximum performance and wind-sensitivity. A single stage
burning time between 10 and 20 seconds appears to be reasonable. This
range of burning time is not easy to obtain in a small diameter rocket
motor with a total impulse sufficient for the 65 km performance range.
Motor designs are quite resirictive and critical for the single stage
application.

The basic concept in the design of the booster dart vehicle is to
utilize a high performance rocket motor for the first stage and a non-
propulsive dart for the second stage to carry the meteorological payload
to apogee altitude. To take full advantage of this basic concept, it is
necessary to use a rocket motor with a relatively short burning time and
high mass ratio. The basic technical advantage of this system occures
by obtaining a high velocity in a short period of time and separating the
dart as early in the flight as possible. Since the dart has a comparatively
high weight-to-drag ratio as compared to the booster, this early separation
minimizes the energy lost fo aerodynamic drag.
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The velocity at the end of booster burnout is dependent upon
the rocket motor mass fraction and specific impulse, However, when
allowance is made for both the dart and associated flight weight hard-
ware, the overall burnout weight of the system becomes of paramount
importance. If booster burnout time is kept to a short duration, ie€.,
one or two seconds, then the accumulated velocity of impulse lost to
drag during the boost phase will be relatively small. Booster diameter
and the resulting interstage design, i.e., cone angle and weight, also
have a relatively important influence on booster drag performance,
especially which rocket motor burning times are appreciably longer than
two seconds. In a similar manner, booster fin size is relatively import-
ant for relatively long burning time rocket motors. A careful trade-
off should be made between dart weight and booster fin size in order
to maintain an adequate static stability margin for the vehicle during
boost phase, and yet not penalized the booster burnout performance
with an excessively heavy dart.

Rocket motor design is not so critical for two=stage vehicles as it is
for either the single stage or booster dart vehicles. The booster or firsi~
stage need not have a particulary high value for mass fraction for it is
weighted down with the second-stage and payload anyhow. The thrust
level should be relatively high to provide an appreciable lift-off
acceleration. This is to reduce wind effects. Since the interstage coast
period can be selected by the vehicle designer, the burning time of the
second stage is not critical. Short burning time second stages can be
ignited at a higher altitude to reduce drag losses. Thus, there is a great
deal of latitude in rocket motor design for the two-stage vehicles. Since
short burning time rocket motors are general ly less expensive to fabricate
then the long burning time motors, and have higher mass fractions (less
inert weight and insulation required) the obvious choice for a two stage
meteorological rocket would be a minimum cost short burning time boiler
plate booster and an improved mass fraction short burning time second
stage motor,

Although it is expected that the booster dart vehicles will dominate
the routine meteorological rocket applications to 140 km over the next
few years (because of low cost and low wind dispersion), there probably
will be a modest requirement for a single stage vehicle to replace the
Arcas for semi-routine ozone soundings. Such a vehicle should have an
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improved performance (carry a slightly larger diameter payload than
4.5 inches to about 75 km) and should be less expensive than the
Arcas. For payloads diameters larger than about 2 inches and altitudes
above 140 km the obvious choice is a two=stage vehicle. The 140 km
Viper Dart application is probably as far as the booster dart concept
can reasonably be used.

6.5.3 Vehicle Impact Dispersion.

Vehicle impact dispersion factors can be divided into wind effects
and non-wind effect factors. The wind effects can further be sub~-divided
into random error and bias components., The wind effect bias can be
significantly reduced by current wind-weighing techniques which permit
off-setting the launch angles to correct for the wind. Since this procedure
is not perfect, there is a wind measurement error, and the wind velocity
changes with time there is a random wind effect which directly causes
dispersion. The greater the wind sensitivity for a vehicle, the greater is
the random wind effect error and resulting impact dispersion.

For most vehicles random wind effects and thrust misalignment
cause a majority of the vehicle dispersion. By reducing or eliminating
these two causes of vehicle dispersion, quite small impact patterns can
be accomplished. Essentially all sounding rockets are caused to roll or
spin about their longitudinal axis by employing fin incidence or cant.
This is done to cancel or vector out vehicle misalignment dispersions.
However, vehicle spin rates do not build up until an appreciable distance
is achieved from the launcher, and vehicle velocity has become appreciable.
[n these cases the thrust misalignment, just as the non-spinning vehicle
leaves the constraints of the launcher, diverts the course of the missile
and a significant dispersion occurs. If the missile were pre-spun before
leaving the launcher, this element of dispersion could be eliminated.

The Loki systems accomplished this by using helical rails. This is one
reason that the Loki dispersions are mininal. To reduce the random wind
effects dispersion, the overall missile wind sensitivity must be reduced.

6.5.4 Vehicle Wind-Sensifivity.

Wind-sensitivity performance of the vehicle is a function of the
boost acceleration, which is related to rocket motor burning time, and
the relative magnitudes of the vehicle statfic stability margin and transverse
moment of inertia. Wind effects are slight for a very fast acceleration
and short burning time rocket motor. If the vehicle static margin at lift-off,
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and during the boost phase, is maintained at an adequately small value,
and the moment of inertia about the pitch axis is large, wind effects

are slight. Although by increasing the launch velocity of a given vehicle
a reduction in wind sensitivity can be made, such a reduction may not

be great. The total time the vehicle is under propulsion is the main factor
coniributing to the wind sensitivity of a vehicle in spite of the launch
velocity. Thus, Arcas wind sensitivity is not greatly reduced by employ-
ing the gas generator charge during the launch stroke or even by employ=
ing a booster rocket. Dual thrust vehicles will also be wind sensitive

as long as relatively long burning times are employed for sustained thrust
phase in spite of the increase in launch velocity. The only really
effective answer to reduce wind sensitivity is short burning times.

A comparison of the wind dispersion of short and long burning
time vehicles is presented in Table 6~28. It should be noted that the
wind-sensitive altitude ceiling is considerably higher for the long burn~
ing time vehicles. Since the higher altitude winds are generally much
stranger than the low altitude winds, the resultant ballistic wind will be
greater. Thus, the wind displacement differences between the short and
long burning are even greater than indicated.
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7.

GUN PROBES

7.1 General.

Since 1961, high-performance, conventional guns have been
used to launch atmospheric probes. This development has been under-
taken by the U. S. Army Ballistic Research Laboratory (BRL) working
closely with McGill University Research Institute of Monireal, Canada
and NASA - Wallops Island, Virginia, under Project HARP (High
Altitude Research Project). Project HARP is devoted to the develop-
ment of high altitude gun launched rockets and projectiles, the acquisi-
tion of engineering and scientific data on the upper atmosphere and the
critical vehicle-environment interactions. As part of this effort, 5-inch
guns have placed 25-pound projectiles at 250,000 feet, 7-inch guns have
placed 60-pound projectiles at 330,000 feet and 16-inch guns have
reached 590,000 feet with 185-pound projectiles as indicated in
Figure 7.1-1. Chaff, balloon, aluminized parachute and chemical
payloads have been successfully used while on-board telemetry unifs
are in an advanced state of development.

Although the major structural problems of high-'g' telemetry have
been solved for the most part, the reactions to high velocities encountered
in the lower realm of the atmosphere have hindered development of
instrumented payloads. This has included the more slowly accelerated gun-
boosted rocket vehicles of the 7-inch and 16-inch guns, developed to
carry payloads to exireme altitudes and possibly orbital missions.

Initial tests of a gun probe system began on the 5-inch gun at BRL
Aberdeen Proving Ground, Maryland, during June 1961. These tests,
conducted at the Edgewood Peninsula launch site were followed by the
installation of a 16=inch gun at Barbabos, W. l., and testing of the larger
gun probes began in January 1963. Since these original tests, installation
of the 5-inch gun as spread to sites at Wallops Island, Virginia; White
Sands, New Mexico; Barbabos; Fort Greely, Alaska; Highwater, Quebec;
and Yuma, Arizona. Additional 16=inch gun installation have included
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FIGURE 7.1-1 GUN PROBE PERFORMANCE SUMMARY
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facilities at Yuma and Highwater, the latter being a horizontal test
fire installation. Testing of the 7-inch gun probe was not initiated
until May of 1964, since surplus or worn out hardware of this new
gun were not available up fo that time. The initial Wallops Island
Tests were followed by installation of the gun at White Sands with
additional facilities planned for other sites as the modern hardware
becomes available.

Most of the test previously conducted have developed ballistic
and design techniques for this entirely new field of technology so that
reliable, optimum performance could be substantiated. The many
problems encountered during the early phases of development showed
that it was a more complex undertaking than had previously been
anticipated. Significant engineering efforts solved may of the inherent
problems in gun launched probes and some scientific data have been
gathered. These successful probes are primarily wind profiles measured
by chaff, aluminized balloons and parachutes and by tri-methyl-aluminum
trials. A number of successful 250 mHz and 1750 mHz telemetry flights
have been made primarily with the slower, larger 16-inch projectiles
which carried various types of instrumented payloads. However, the
greatest success of gun launched projectiles has been TMA chemical
trial studies of the Sporadic E layer variations.

Generally, the gun probe may be considered in terms of two basic
vehicle classifications: the ballistic glide vehicle which receives its
thrust solely from the gun launch, and the rocket-assisted vehicle (des~
cribed in Section 7.5). In the case of ballistic glide projectiles, the
flight trajectroy is controlled by launch vector velocity and ballistic
coefficient. To obtain a high ballistic coefficient, high fineness ratio
milliles are utilized having large vehicle mass densities. To obtain a
high launch velocity, sabot launched sub-caliber vehicles are used,
retaining a high ballistic coefficient after sabot separation. By an
increase in barrel length equal to 75 calibers, muzzle velocity is also
increased so that maximum gun performance and propellant efficient is
achieved. A further increase in muzzle velocity is realized when the
muzzle end is sealed with a thin plastic sheet and the barrel evacuated
of air. Larger bore diameter guns would increase the weight-to-drag
ratio and decrease acceleration load, but development of a larger gun
does not seem practical at the present state of gun probe development.
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7.2 5-Inch Gun Projectiles.

Initial development of a 5~inch HARP probe system utilized
a 120 mm, T-123 high performance tank gun, smooth-bored to 5.1
inches, muzzle extended to 33 feet and mounted on a 155 mm towed
vehicle carriage. The entire system is mounted on a 30~degree
inclined ramp to allow for near vertical firing. The missile and charge
are loaded into the tube separately. To achieve proper seating and
placement of the missile in the tube, the sabot quarters are backed with
plastic and are made slightly oversize, so that a special loading fixture
and hydraulic ram force loads the projectile at a peak force of 10 tons.

The flight vehicle is a subcaliber, fin-stabilized projectile,
45-inches long, weighing 20~pounds and has a maximum body diameter
of 2.6 inches as indicated in Figure 7.2-1, The fins are slightly smaller
than the gun barrel and are canted to induce a small spin rate. The
payload cavity, 1.8=inches in diameter by 7-inches deep, is located
in the forward body of the vehicle. Muzzle velocities in excess of
5,400 feet/sec and a load equivalent of 55,000 'g" occur at launch,
producing a ballistic glide to a maximum altitude of 250, 000 feet.
Figure 7.2-2 illustrates the altitude vs range profile for various launch
angles at 4,000 feet launch elevation.

Payloads originally consisted of chaff or meteor projectiles
followed by testing of a 1750 mHz telemetry package with nose antenna.
These tests were unsuccessful and provided evidence of poor design, which
resulted in redesign of the entire system. This improved second generation
gun probe had increased performance and reduced aerodynamic instability
as well as incorporated an advanced telemetry and antenna system.
Refinements of the Solistron(SOLId state klySTRON) transmitter were made
to eliminate the change in frequency due to excessive launch temperatures.
This included a reduction in size to 1-inch long by 1.125-inches in
diameter, permitting the use of ample thermal insulation and heat sinking.
However, temperature data showed that the package experiences temp-
eratures during the glide portion of the flight in the order of 300°C, high
enough to alter the electronic and mechanical characteristics of the antennq,
RF circuit and telemetry instrumentation. Changes in lcad impedance due
to excessive temperature caused deviations in frequency and power output.
This results in weakened signal strenght, high frequency drift, additional
RF noise and eventual signal dropout. Efforts are underway to overcome
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the problems of excessive aerodynamic heat transfer and temperature
effects.

In order to readily provide wind sensing probes for the 5-inch
gun, means fo prevent tearing or burning of a parachute payload were
developed. These aluminized parachute vehicles have been providing
wind data to as high as 70 kilometers on an operational basis. Several
attempts have been made to reduce production costs, ammend the current
payload volume resiructions and at the same time optimize vehicle per-
formance. However, a practical, improved probe system is under the
same basic physical resirictions inherent with the gun probe technique,
and therefore confined to limited design innovations.
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7.3 7-Inch Gun Projectiles.

The 7~inch system is essentially a scaled up version of the 5~inch
system with three times the payload capacity and with an altitude per-
formance of 350,000 feet. The modern 175-mm M~113 gun is smooth-
bored, extended to 50~feet and placed in a highly modified T-76 double
recoil field mount. Interior ballistics have been a major problem with
this gun. Desired velocities are not always achieved at computed pressures
and erratic pressure variations occurred with larger charges.

The basic flight vehicle is é4=-inches long, 3.6~inches in diameter
and weigh. 60=pounds. The 7-inch diameter plastic sabot is again made
oversize and force loaded at 10 to 30 tons using a hydraulic jack as shown
in Figure 7.3-1. The vehicle achieves a muzzle velocity of 5400-feet/sec
at 35,000 'g'. A smaller, high performance missile has been developed
to reach 400,000 feet with a much smaller payload. This missile is 55-
inches long having a 3-inch diameter and weighs 40-pounds. Metal
parts behavior of this highly accelerated system have caused problems
during development.

Payloads have utilized the usual chaff and aluminized parachutes
to measure winds above 210,000 feet, Available payload volume is
125-cubic inches. Chemical payloads have been successfully used,
including a package of cesium nitrate with high explosives to generate
an observable cloud of electrons at 330,000 feet. Also a Langmuir probe
instrumented payload has been tested. A full bore 7-inch rocket vehicle
has also been developed consisting of a 125 pound projectile with a fiber-
glass case and solid propellant rocket having pop=out fins. Launched at

muzzle velocities exceeding 4,000 feet/sec it should place a 20 pound
payload at 500,000 feet.
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7.4 16-Inch Gun Projectiles.

The 16-inch gun incoprorates the use of a Mark D barrel, smooth-
bored to 16.4 inches and elaborately modified to support a barrel exten-
sion to 119-feet, 5-inches. Weighing approximately 200-tons, it can be
elevated to 85 degrees in less than 8 minutes. Subcaliber, oversized
sabot launched vehicles are rammed into seating position with a maximum
force of 50 tons. The necessity for a fast burning, high pressure yield
propellant charge lead to the development of a spaced charge, multi-
point ignition technique which provides optimum efficients of the pro-
pellant charge, and is used in conjunction with the evacuated barrel
technique.

Various types of vehicles and payloads have been used from
Martlet 1 smoke and flash vehicles to Martlet 4 orbit potential rockets.
The Martley 2C, TMA loaded vehicle has been the system most utilized
because of it's simplicity and high performance. Details of its wind
measurement technique were discussed in Section 3.2.7.3. Weighing
185~pounds carrying a 25-pound payload, it can achieve apogees in
excess of 180 km. [t is 55~inches long by 5.4 inches in diametfer and
is accelerated to 15,000 'g* at a launch velocity of 7,100 fi/sec.

Typical payload configurations are illusirated in Figure 7.4-1. Other
vehicles have been used to test various systems designs and payload
configurations with the more recent efforts projected toward gun-boosted
rockets. Active payloads using both 250 mHz and 1750 mHz telemetry
have been carried on a number of flights. Onboard sensors have included
magnefometers, sun-seekers, pressure gages and Langmuir electron density
probes. However, difficulties in telemetry and antenna functions have
again been a problem, and these devices must still be considered under
development.
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7.5 Gun-Boosted Rockets.

Full bore gun-boosted rockets theoretically possess excellent
performance while retaining a portion of the gun's economy and low
dispersion. Optimization of the gun-boosted system involves a trade-
off between the amount of kinetic energy imparted by the launcher
and the amount of chemical energy carried aboard, considering that
as the total launch weight is increased, launch velocity decreases.
As launch weight is decreased to obtain high muzzle velocity, the
ballistic coefficient becomes the dominant factor just as with the
ballistic glide missile. The optimum situation has been found to exist
when relatively large rockets are matched with intermediate gun
velocities; the gun performing as a reliable, retainable first stage for
the system.

Initial development of a gun launched rocket was the Martlet
3A vehicle. A subcaliber projectile weighing 153-pounds, it contains
a 57-pound case-bonded 6-inch nitrocellulose grain motor. Delay
ignited a 14-seconds after launch, the motor burns for 7-seconds carry -
ing a telemetry package weighing 50-pounds in a 46,8 cubic inch
payload section. Many problems relating to the effects of highly
accelerated motor propellants, telemetry packages and antenna designs
were studied as well as various internal ballistic concepts. Additional
types of vehicles were built for the 16=inch gun and one model was
built for the 7=inch gun, the Martlet 3E.

Development of a full bore 16-inch Martlet 3D vehice provide
a first stage for the Martlet 4 orbital vehicle which consisted of three
stages. Additional development of guidance control units and liquid
upper stages have continued efforts along these lines.

A subcaliber vehicle was also developed for extreme high altitude
performance or orbital potential with reduced complexity. This two stage
Martlet 2G-1 vehicle is 169~inches long by 11.4 inches in diameter and
has a total weight of 1,100 pounds.

All the gun=boosted rockets mentioned above are illustrated in

Figure 7.5-1. Additional gun launched systems, such as a Scramjet first
stage vehicle, have been proposed as further advancements of gun launch
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potentials. As further studies of high 'g" acceleration continue, utiliza-
tion of the gun-boosted rocket for high altitude missions may become
possible, although they may never become really practical in this
application.
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7.6  Meteorological Rocket vs Gun Probe Comparison.

Since the development of the gun launched projectiles has
demonstrated an additional means of gathering high atmospheric data,
comparison of this system with the meteorological rocket is necessary to
evaluate its essential performance. Table 7-1 presents a comparison
of gun-launched vehicles against operational meteorological rockets.
Another effective means of comparison would bé to consider the major
aspects in catagories of the advantages and disadvantages that gun
probes have in relation to rockets.

Advantages.

].

Gun probes can achieve high accuracy in placing
a package at a desired point in space. This
performance can be achieved consistently without
regard o changing weather conditions.

Minimal wind deviation and low dispersion provide
decreased range limitations and restructions. High
velocities insure accuracy of the ballistic trajectory
and decrease vehicle impact range.

The economy of the inert payload or the first stage
substitution of the gun launched rocket is an

important consideration. The cost of propelling a
given weight to altitude is particularly interesting

for orbital insertion vehicles, but is not really
advantageous for meteorological applications. The
economy in reduced range area is worth consideration.

Barrel confinement provides a reliable means of stabiliza-
tion and guidance through high Mach numbers, insuring
range safety at launch, and reducing complications
which are inherent to rocket launched vehicles.
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Disadvantages.

]o

Only those measurements which involve apparatus
that can be made resistant to high acceleration
stresses are possible. The exireme acceleration

loads produce an inflight elastic rebound phenomenon
which restricts the structural fabrication of utilized
hardware.

Payload volumes are restricted by the structural/

weight ratio required of the high density projectiles.
Additionally, high aerodynamic heating effects

limit sensors, telemetry and antenna designs and create
the greatest challenge in the development of instrumented
payloads.

Since internal ballistics of the gun is a determining
factor of flight trajectory, its performance should

not vary from that computed for a particular launch.
However, this has not always been the case, since
variations have occurred from erratic internal propulsion.
i.e. The powder bags used are highly sensitive to
changes of temperature and humidity. Additionally,
various disturbances at the gun, such as blast, muzzle
whip and sabot separation, can impart linear and
angular momentum to the missile, causing an oscillatory
motion in the trajectory know as aerodynamic jump.

Muzzle emergence and transition to free flight have
incurred further restrictions to vehicle design due to
the high Reynolds number, heat and drag experienced
at that time. The resultant noise intensity at firing
creates a high nuisance value for this system.

Maintenance costs of the gun are high in comparison
to rocket launchers. Although basic propellant costs
per round are highly economical compared to rocket
fuels, initial cost of the gun is high. Considering
that the erosion life of a 5-inch tube alone is limited
to 350 rounds with reboring necessary after 200 rounds,
operating costs average high per vehicle launch com-
pared with equivalent performance meteorological
rocket systems.
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Although there has been a great deal of discussion concerning
the relative merits of gun probe systems for meteorological soundings,
the gun probes appear fo be more expensive and operationally more
cumbersome than for the lower cost meteorological rocket systems.

The gun probes are limited in payload diameter and volume. They
currently offer state-of-the=art development problems for sensor instru-
mentation. The gun projectiles are fairly expensive, and the overall
cost per launching does not compare favorably with the existing booster
dart vehicles when account is made for the emplacement, reboring and
launching costs. The gun probe systems may in the future be competitive
with the booster dart systems for simple payloads such as the passive
inflatable sphere if significant improvements are accomplished and a
large number of launchings are to be made from a given site. There
are no prevalent advantages for the gun-boosted rocket system in the
meteorological rocket field since the added complexity of firing a
rocket system from a gun is neither simple nor inexpensive.
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SUMMARY

The strongest overall meteorological rocket requirements are for
wind and temperature measurements throughout the rocketsonde region of
30 km to 60 km or slightly above. These measurements are currently
being made on a routine basis with the Arcas and the lower cost Loki
Dart rocketsonde systems. The bead thermistor measurements appear to
be adequate to 60 km, and satisfactory soundings have been made to
68 km by applying aerodynamic heating and radiation correction factors
to the raw temperature data. With a slower fall rate decelerator and
advanced thermistor sensor techniques, it appears that the low cost
rocketsonde technique with an immersion thermometry temperature measure-
ment is possible up to an altitude of about 75 km. An additional improve~
ment in the accuracy of the conversion of the measured temperature pro-
files into pressure and density profiles through the rocketsonde regions may
be accomplished by the incorporation of a one-point pressure switch in
the rocketsonde insirument package. If this switch can be made sufficiently
accurate at a low cost to measure 28 mb (80, 000 feet) within an rms error
of 0.30 mb, this technique will be more accurate than using the hypsometer
radiosonde data which may differ significantly in space and time from the
rocketsonde run. A super Loki instrumented dart system with a large
decelerator is being developed jointly by AFCRL and NASA/MSFC to
accomplish the above extension of the current rocketsonde measurements.
This appears to be the lowest cost approach for routine measurements in
this altitude region.

The second most important requirement is for density and wind
measurements from rocketsonde altitudes to 100 km. Currently the most
promising system for this application is the Viper Dart vehicle with the
Robin inflatable falling sphere. Development flight tests by AFCRL and
the initial operational flight tests at Cape Kennedy and WSMR indicate
that reasonable densities and winds can be obtained to about 90 km with
this system. An AFCRL development program is underway to increase
this altitude to 100 km in the near future. As the Viper Dart Robin system
proves to be useful, costs can be significantly reduced by developing a
lower cost booster than the Viper rocket motor or by developing a two-
stage vehicle from two small low cost motors for this payload.



The Robin payload is quite suitable as a meteorological
sensor because of its structural simplicity, low weight and volume
characteristics, ease of deployment and compatibility with various
vehicles and payloads, reliability and measurement accuracy, and
its relative economy as compared with other more complex, sophisticated
sensing systems.

A recent demonsiration of the Robin sphere performance was in
support of the Apollo Il launch at Cape Kennedy, Florida. The
support requirements of this particular mission necessitated a reliable
measurement of atmospheric parameters from surface to 90 km. As
part of this effort, the Viper Dart Robin vehicle was flown in conjunction
with the Loki Datasonde and the respective Rawinsonde observations.
The resulting data produced temperature, density, pressure and wind
profiles from the surface to 90 km with excellent agreement in the
overlap regions. These atmospheric parameters have an appreciable
effect on the Saturn V vehicle guidance and control functions during
its powered flight to 90 km. Figures 8.1~1 and 8.1-2 represent the
density profiles derived from these data. Figures 8.1-3 and 8.1-4 pre-
sent the wind profiles of these observations. [t is interesting fo note
the overlapping of all three wind profiles in Figure 8.1~4 since the
Rawinsonde utilized GMD~4 tracking and the others incorporated FPS-
16 tracking. Temperature profiles are illusirated in Figures 8.1~5 and
8.1-6.

The main disadvantage of the Robin passive sphere technique is
the requirement for a radar with the precision of the AN/FPS=16 or
better. During the Sparrow-Arcas Denpro program, it was found that
the tracking accuracy of the AN/GMD -2 compared favorably with the
AN/FPS-16 radar data in the slant range parameters. No doubt this
is due to the fact that the main tracking variable during vehicle ascent
is slant range, and the GMD~2 is fairly accurate in slant range deter-
mination. Therefore, there may be a requirement for a low cost pitot
probe system utilizing GMD=-2 tracking and telemetry at sites where
adequate radars are not available. The vehicle for such a system should
consist of two low cost, relatively small rocket motors configured into
a two=stage vehicle with a final stage diameter from 3.0" to 4.0". The
vehicle apogee should be about 200 km in order to maintain sufficient
velocity through 100 km to assure accurate density data to this altitude.
Such a system should cost on the order of $2, 500 if the currently available
vibrating diaphram pressure gauge is found to be adequate. If wind data
were desired from this system an inflatable sphere could be ejected near
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the vehicle apogee, and the wind data could be retrieved with a less
precise radar than the FPS=16. If no radars were available at a particular
site, an extra large inflatable sphere could be deployed with a relative-
ly light-weight GMD~2 transponder. This system would be considerably
more expensive than the simple inflatable falling sphere experiment,

and this extra cost should be weighed against the necessity for obtaining
100 km wind and density data at sites without precision radar.

There appears to be an interest in a modest scale semi-synoptic
ozone network to an altitude of about 75 km. Typical ozone payloads
weigh about 35 pounds, and a reasonable diameter is about 5.5" to 6.5".
Although fairly large signal-stage vehicle has been proposed for this
application, a better choice might be a low cost two-stage vehicle.
Currently such vehicles do not exist.

Electron density payloads are fairly small and lightweight. The
same two-stage vehicle proposed for the pitot probe system would be most
appropriate for electron density measurements to 200 km. Electron
density measurement systems should be amenable to fairly low cost

($2,000) production.

For large numbers of launchings per year at a given site, a size-
able investment in the ground-based facilities may be justified on the
basis of reducing the expendable costs. For instance, if density is
required to 100 km at a site where there is no radar, the choice may be to
either construct an acceptable radar at the site, or to use a GMD~2
type system. With the radar, a low cost passive falling sphere system may
be used, whereas with the GMD-2, a more expensive pitot probe type
system may be required. The most economic choice would depend upon
the number of firings anticipated during the useable life (estimating
obsolescence) of the ground equipment. If the passive sphere system
should cost $1, 300 and the pitot probe system cost $2, 300, then one
thousand flights would be required from the given site to amortize the
cost of a $1 M radar. Thus, the establishment of a realistic requirement
for the number of flights from a given launch site per year is quite
important for future design efforts.
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CORRECTIONS FOR METEOROLOGICAL ROCKET TEMPERATURE SOUNDINGS
ON AN INDIVIDUAL BASIS
By Robert M. Henry

NASA Langley Research Center
ABSTRACT

Past studies have derived magnitudes of rocketsonde temperature errors
from assumed atmospheric profiles and parachute trajectories; the present paper
derives corrections using the actual trajectory and t.e measured temperature
profile. Corrections are derived for aerodynamic heating, thermal lag, solar
radiation, infrared radiation, electrical heating by the measuring current and
by radio-frequency radiation, and for thermal emission by the thermistor and
mount. Corrections are derived for a simple postmount and for a thin-film mount
such as the Arcasonde IA sensor. It is shown that the thin-film mount produces
large reductions in the magnitudes of the corrections required. A method of
computing the ventilation velocity to improve the accuracy of the large aero-
dynamic heating correction is presented.
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CORRECTIONS FOR METEOROLOGICAL ROCKET TEMPERATURE SOUNDINGS
ON AN INDIVIDUAL BASIS

By Robert M. Henry*
INTRODUCTION

With any measuring system, there is always concern as to the measurement
errors of the system. These errors are of particular interest where meteorolog-
ical rocket systems are concerned because the errors generally increase with
altitude, and however much the systems are improved there is always a desire to
utilize data from still higher altitudes where the errors become increasingly
large.

A number of previous studies (for example, refs. 1 to 6) have considered
the problem of measurement errors of bead thermistors primarily by assuming
standard conditicne and nominal trajectories and solving for the thermistor tem-
perature from an assumed atmospheric temperature profile. The present study
considers the inverse of this problem: given the time history of the thermistor
temperature, to find the atmospheric temperature profile. This, of course, is
~he problem faced by the using meteorologist.

The purpose of this paper is to help extend the useful altitude range of
meteorologizal rocket data by presenting a system of corrections based on the
actuzl conditicons and trajectory of the particular measuring system.

SYMBOLS
A area
Alv. albedo
c heat capacity
C drag coefficient
Cp specivic heat of air at constant pressure
G geome“ric factor depending on shape and exposure
acceieration of gravity
h coefficient of convective heat transfer for total area

solar constant

Cy

*Aerospace engineer.

L-5%35
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coefficient of thermal conductivity

m mass of parachute plus payload
r recovery coefficient

S area of parachute

T temperature

Terr effective radiation texperature of atmosphere

v ventilation velocity

.\? véctor velocity of parachute

Ve vertical component of parachute velocity

171) three-dimensional vector wind velocity

Wt electrical heating of thermistor due to measuring current and radio-

frequency radiation 5

Vg, vertical wind velocity

V' weight:fng factor

X length of lead wire ,

a absoxrptivity for radiation ;

B cross-sectional area of leed wire

e thermal emisaivity
1 °© Stefan-Boltzmann constant J
P alr density

Subscripts:

atm atmosphere

£ conductive thin film

1 long-wave (terrestrial) radiation

n mount

8 short-wave (solar) radiation

t thermistor
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HEAT-TRANSFER EQUATIONS

To determine the corrections to be applied to the temperature measurements,
it is necessary to evaluate the various heat-transfer mechanisms involved
between the environment and the measuring system and between different parts of
the measuring system.

The first relationship to be considered is the heat equation of the therm-
istor itself. This equation is a statement that the rate of increase in the
heat content of the thermistor is equal to the sum of the heat inputs:

6. Tt (o, 4r Y2 o)+ e G d(1 + Alb.) + @G0T ot
t dat t| Tatm t 2cP t st st : 1t 71t eff

- A’c*‘-tC’Ttl+ + Wy + gkiE(Tm - Tt) (1)

The term on the left of the equation represents the net rate of addition of
heat. The first term on the right is the rate of heat transfer by conduction,

and includes the aerodynamic heating {\r v2/2c_}. The sum of T + 1 V2/2c
t P atm 7 Tt P

is called the recovery temperature, and represents the temperature of the atmo-
sphere in actual contact with the surface of the thermistor.

The remaining terms represent, respectively, solar heating, infrared
heating, thermal emission by the thermistor, electrical heating (by the measuring
current and by the radio-frequency radiation from the transmitter antenna) and
heat conduction through the lead wires from the mount.

The expression for heat conduction given here (EkB/X) assumes a uniform
gradient of temperature along the wire. This is appropriate if the heat trans-
fer between wire and environment is small, the temperature lapse rate is not
changing rapidly, and the system has recovered from any large initial tempera-
ture differences at deployment. It is not appropriate for systems having long
lead wires, and may also be inappropriate for a short period of time immediately
after deployment if the initial temperatures of the system components are
greatly different from their respective recovery temperatures.

Heat-Transfer Equation for Thin Film

The widely used Arcasonde IA (ref. 5) and also a number of more recent
designs developed by, for example, White Sands Missile Range, Metrophysics,
Inc., and Thiokol's Astro-Met Division utilize a short lead wire plus a metal-
lic thin film deposited on a plastic thin-film substrate in the electrical path
of the measuring current. The original purpose of this arrangement was to
achieve thermal isolation of the thermistor from the telemetry package. Hov-
ever, it is found that the large area of thin film in addition to providing

- 383 -



thermal isolation serves as a very effective heat exchanger with the atmosphere.
In fact, the heat transfer from the film, conducted through the lead wires,
dominates the transfer processes of the thermistor.

The heat-transfer equation of the thin film can be expressed by an equa-
tion similar to that for the thermistor:

de

"
Ce g = Pr\Tatm * Tr 2o, " Te| + ageGeed(1 + Alb.) + a; Gy poTopp

2k,
- Af€f0Tfh + '—X‘Q(Tt - Tf)

—
ro
~

which differs from equation (1) principally in the change of subscripts. The
geometric factors in the radiation terms are different, and there is strong
dependence on the solar angle. The electrical heating is expected to be negli-
gible and is omitted. The conduction term is the negative of the conduction
term in equation (1) with T, = Te-

CORRECTION EQUATIONS

Equations (1) and (2) provide a basis for not only evaluating the various
errors in the film-wire-bead system, but also for correcting them using the con-
ditions of the actual flight rather than nominal corrections.

Correction Equation for Bead

If the temperature of the bead thermistor T{ and, consequently, its
derivative is a known function of time, equation (1) can be sclved for the
atmospheric temperature Tg¢y by simple algebraic manipulation. The resulting
correction equation

In
€, dTy  GgiageJ(1 + Alb.)  Gyyay40Tepr

T =Ty - Ty o —— = -
atm = 7t T Tepes T by at hy bt

Wy AtetoTth
+
ht ht

2k
"‘Xhi(Tm - Ty) (3)

gives the atmospheric temperature as the sum of the thermistor temperature plus
a series of correction terms which may be called, respectively, the aercdynamic
heating correction, lag correction, solar-radiation correction, long-wave-

radiation correction, electrical heating correction, and conduction correction.
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| Actual evaluation of the corrections is complicated by difficulties and
uncertainties in the determination of some of the correction parameters. In
the altitude range of interest, the bead experiences transition from continuum
flow to slip flow and from slip flow to free molecule flow. This affects the
determination of both the convective heat-transfer coefficient ht and the
recovery coefficient ry. The geometric factors Ggt and Gy are affected
by deviations of the actual beads from the nominal diameters and from the
nominal spherical shape. The solar and long-wave absorptivities and emissivi-
ties agt and a3y and the emissivity €t may vary with age and exposure to
a contaminated atmosphere. While variations in the solar constant J may be
neglected, the value of the albedo Alb. will vary over a wide range depending
on cloud cover, snmow cover, vegetation, and at costal locations, on the solar
angle. The effective radiating temperature of the atmosphere Terf varies with
latitude and season and also with cloud cover. As a result, it will be diffi-
cult to mske radiation corrections with a high percentage of accuracy and
reflective coatings or radiation shields are needed to keep the magnitude of
these corrections small.

Finally, the conduction correction requires a knowledge of the mount tem-
perature Ty which in the case of the thin-film mount is the film temperature
Te. This can be found from the heat equation of the film, equation (2). In
order to obtain closed form solutions, it is pecessary to make a suitable

. approximation for the quadratic term At€{oT¢'. This may be done by using the
| first two terms of the Maclaurin series expansion of Tfh

oot ~ Tt + 4 3(Te - Ty) (4)

This linear approximation will be very accurate at the temperature encountered
by the meteorological rocket, producing an error of around 1.0 percent for a
300 difference between Tp and Tt.

With the substitution of equation (4) into equation (3), equation (3) can
be solved for (T¢ - T¢). If the resulting value 1s substituted into equa-
tion (2) and the result solved for the atmospheric temperature, a system cor-
rection equation results:

¥ ary, b 4
PeTe 5 * € - - GststI(1 + AID.) - GpageTepr - W + ArfeoTy
A

Ta.tm = Tt +

he(2kB/X)

hy +

he + 2kB/X + hAfedet5

2 4T, b 4

o + 2ks/§ﬁ{XhAf - 3{3 here %%; + Cr Egg - Ggragel(1 + Ah.) - GreagpoTers + Afedeﬁz}
€

+ i )

he(2kB/X)
hy +
} hp + 2KB/X + bApepoTtd
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in which the unknown film temperature T¢ has been eliminated. The time deriv-
ative of the film temperature, which still appears, can be assumed to. be approx-
imately equal to the derivative of the thermistor temperature except for a brief
pericd immediately after deployment where a step change in temperature may pro-

duce a temporarily large difference.

It can be seen from equation (5) that the expansion of the conduction term
has also changed the aerodynamic, lag, radiation, and emission terms. In each
case the denominator ht has been replaced by the expression

hy (2kB/X)

hy +

he + 2kB/X + bApepoTyd

which can be regarded as & system convective heat-transfer coefficient. The

behavior of the system can be understood
terms in the first and second fractions.

aerodynamic heating, lag, radiation, etc.

plus the corresponding term for the film

2kp/X

better by considering the corresponding
It can be seen that each term -
- 1s the sum of the term for the bead
multiplied by a weighting factor

Wf_

he + 2kB/X + bApepoT,”

(6)

which is, approximately, the ratio of the conduction 2kB/X to the total ther-

mal dissipation hp + 2kB/X + MApcpoTio.

The denominator - the system convec-

tive heat-transfer coefficient - is a similar weighted sum of the thermistor

and film heat-transfer coefficient

hgystem = bt *+ wehy (7

Thus, equation (5) can be rewritten

ar, dTp
ngry + wehpre y2 Ot g Ve g
Totp = Tt - -
atm t hy + wehy | 2cp hy + wehp
Gstast + WeGgrage Gyt + VeGrdyr L
+ J(1 + A1b.) ~ Terf
hy + wehe hy + wehy
W €4 +WApe
t ApegtWhper

- ht + wrhr - hy + wehe
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In equation (8) the aerodynamic, lag, radiation, electrical, and emission cor-
rections appear as separate terms, defined for the total film-wire-bead system.
There is no separate ccuduction term, since the length of the conductive film
strip is great enough to effectively icolate the film-wire-bead system from the
payload structure.

Equation (8) is completely general {except for omission of convection and
radiation of the lead wires) and gives solutions for atmospheric temperature in
terms of measurable values. Solutions can 2lso be found when the radiation and
convection terms for the wire are included (ref. 7). - However, while these more
complete equations are suitable for computer reduction of the sounding data,
they are lengthy and cumbersome. The behavior of the sensor system is more
clearly illustrated by the vory close approximation of equation (8). Notice
thet the evaluation of equation (8) does not require knowledge of a "time
constant,” and there is no time dependence beyond the necessity for evaluasting
the thermistor temperature derivetive. Thus, the correction equation can be
applied to any portion of the temperature trace where the derivative can be
evaluated.

The behavior of the sensor system over certain portions of the altitude
range of interest can be lllustrated even more clearly by considering some
limiting cases of equation (8).

High-Altitude Case

One limiting case of interest is the case where the rilm convective trans-
fer coefficient is very smsll compared to the conduction factor (he << 2kg/X).
This condition is approached with increasing altitude and would be approximated
at 100 km or above. In this case, equation (8) approaches

ar
£
T v@  Gspagp(l + Alb.) . Ot 3 GrpoppoTerst W . Agegoryt
ath £ 2cp he he he heAr hrAgp

(9)

Equation (9) shows that the bead-wire-film sy:tem approaches the behavior of &
pure thin-film sensor at the higher altitudes. It should be noted that at the
altitudes where this equation applies hp will be sufficiently small that none
of the indicated correction terms can be safely neglected, although with fore-
secable parachute developments the aerodynamic heating correction is expected
to be the term of greatest importance. Equation (9) indicates that thermistor
temperatures can be readily corrected at higher altitudes and that the major
obstacle to the use of present sensor systems at higher altitudes is the

development of satisfactory parachutes or other decelerators for use at these
altitudcs,
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Lower Altitude Case

Another limiting case of interest 1s the case where the conduction factor
is very small compared with the film convective transfer coefficient
(2kB/X << he). This condition is approximated at altitudes below about 70 km.
In this lower altitude case equation (8) approaches:

Ty,
hery + (2kB/X)re 2 . Ct % Ggt¥etd (1 + AlD.)

by + 2kB/X  2c, hy + 2kB/X  hy + 2kB/X

Tatm = Tg -

n
Gy0y40Ters Wy . A€ Ty,
h¢ + 2kp/X ht + 2kB/X hg + 2kp/X

(10)

In this case the system heat-transfer coefficient becomes hy + 2kB/X. Notice
that the numeretors of the lag, radiation, electrical, and emission terms are
the same as in the simple thermistor correction equation (3), that is, the

seme as for a simple thermally isolated thermistor. As a result, each of these
terms 1s substantially reduced in magnitude by the increased denominator. 1In
the 60- to TO-lm range, hy decreases with altitude to values an order of
megnitude below EkB/X, with corresponding reduction in the lag, radiation,
electrical heating, and emission corrections. The aerodynamic heating correc-
tion is reduced slightly, primarily because the film (whose recovery coeffi-
cient is heavily weighted) i1s in the continuum flow regime at these altitudes,
with e recovery coefficient of about 0.9 compared to about 1.1 for the bead
thermistor which ie in the slip-flow regime. As & result, the radiation, elec-
trical beating, and emission corrections are on the order of tenths of a degree,
the lag correction is on the order of a degree, and the aerodynamic heating
correction 18 on the order of tens of degrees. (It is sbout 10° K at 65 km for
e nominal trajectory, but deviations from nominal always result in increases.)

Camputation of Ventilation Velocity

Since it appears that the aerodynamic heating is the most important cor-
rectiocn at all altitudes, it is important to determine this correction with the
greatest accuracy which is feasible. In evaluating the aerodynamic heating 1t
has frequently been assumed that the ventilation velocity V can be approxi-
mated by the magnitude of the vertical velocity Vgz. However, this assumption
is valid only if the vertical velocity approximates the terminal velocity, and
previous study (ref. 8) shows that, for the range of bellistic coefficients of
current parachutes, terminsl velocity 1s not closely approached until below
60 km. It is thus desirable to obtain a better representation of the ventlla-
tion velocity.

The desired ventilation velocity V 18 the magnitude of the vector differ-
ence between the perachute velocity and the velocity of the atmosphere

- =
'V - W'. The equatione of motion do not provide a unique solution for this
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value from tracking data unless an assumption is made regarding one component
of the velocity of the atmosphere. A very good approximation can be found,
however, by neglecting the vertical wind velocity in comparison with the ver-
tical component of parachute velocity. The equation of vertical motion for the
parachute (the drag equation) is given by

R av
-%cDSply-_Wl(vz-wz)-mEZ--mg=o (11)

If the approximation that Vz = Vg - Wg 1s made, then equation {1l) can be
solved for the ventilation velocity:
vy
- d —————
"'(“ a )

1
= CpSeVy,

v-—-IV-vTr’i= (12)

which can be evaluated from known or measured quantities. Since tﬁe second
derivative of the position must be determined, precise tracking is needed;
radar tape data rather than plotboard daeta should be used.

The approximation in equation (12) will generally be very good throughout
the region of the atmosphere of interest. It obviously will not apply for a

short time after apogee when the parachute does not possess appreciable verti-
.cal velocity.

CONCLUDING REMARKS

Corrections to rocketsonde temperature profiles for aerodynamic heating,
thermal lag, solar radiation, infrared radiation, electrical heating by the
measuring current and by radio-frequency raciation, and for thermal emission
can be made for current thin-film mount designs es well as for simple post
mounting, and can be made for the actual condtione and parachute trajectory of
the individual sounding.

The accuracy of the aerodynamic heating correction, which is the largest

correction, can be improved by using the calculated ventilation velocity instead
of the vertical velocity.

The use of a thin-film mount, which serves as & heat exchanger between
etmosphere and thermistor results in great reduction of all the corrections
except the aerodynamic heating correction.

The aerodynamic heating correction is reduced somewhat by the thin-film

mount because transitions to slip flow and to free molecule flow occur at
higher altitudes.
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Because the corrections are substantial, especially at the higher alti-
tudes, the accuracy of the sounding at the higher altitudes depends strongly
on the accuracy of the corrections.

Additional research is needed to determine accurate values of the param-
eters used in the corrections, particularly the convective heat-transfer coef-
ficients and recovery coefficients over the range of atmospheric conditions
and flow regimes encountered.
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